سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

River Water Quality Zoning with C- means Clustering A case study: the quality of Zayandehroud River

Publish Year: 1392
Type: Conference paper
Language: English
View: 1,177

This Paper With 6 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

FNCAES01_011

Index date: 15 May 2014

River Water Quality Zoning with C- means Clustering A case study: the quality of Zayandehroud River abstract

The application of fuzzy c-means clustering approach for the interpretation of a large and complex data matrix is presented in this study. The dataset consists of six parameters, have been monitored on 8 key sampling sites for Zayandehroud river. In this paper, a methodology is presented for this purpose using fuzzy c –means clustering method. The efficiency of this clustering method was evaluated using water quality data gathered from the monitoring sampling points along Zayandehroud river. Validity of determinate clusters was determined with partition coefficient (PC) and partition entropy (PE). Also a Fuzzy Industrial Water Quality Index (FIWQI) was calculated for center of each cluster. Most of the months fuzzy clustering showed two different groups of the sampling sites, reflecting the different physicochemical characteristics and pollution levels of the study area. The results show that the proposed methodology was informative for decision-making and to help river water quality management.

River Water Quality Zoning with C- means Clustering A case study: the quality of Zayandehroud River Keywords:

River Water Quality Zoning with C- means Clustering A case study: the quality of Zayandehroud River authors

Fatemeh Soroush

Assistant Professor Water Eng. Dept., College of Agriculture Valie-Asr University of Rafsanjan Rafsanjan, Iran

Jahangir Abedi-Koupai

Professor Water Eng. Dept., College of Agriculture Isfahan University of Technology Isfahan ۸۴۱۵۶-۸۳۱۱۱, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
C. Sarbu, and H. F. Pop, "Principal component analysis versus ...
C. Sarbu, and J. W. Einax, "Study of traffic-emitted lead ...
H. T., Kung, L. _ Ying, and Y. C. Liu, ...
نمایش کامل مراجع