Evapotranspiration and crop yield modeling using fuzzy linear regression
Publish Year: 1392
Type: Conference paper
Language: English
View: 1,097
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
FNCAES01_012
Index date: 15 May 2014
Evapotranspiration and crop yield modeling using fuzzy linear regression abstract
The relationship between crop production and amount of evapotranspiration is very important to agronomists, engineers, economists, and water resources planners. These relationships are often determined using classical least square regression (LSR). However, one needs high amount of samples to determine probability distribution function. Linear regression also requires so many measurements to obtain the valid estimates of crop production function coefficients. In addition, deriving ET-yield regression for each crop and each district is usually expensive, since lysimeteric experiments should be repeated for several years for each crop. The object of this study is to introduce a fuzzy linear regression as an alternative approach to statistical regression analysis in determining coefficients of ET- yield relations for each crop and each district with minimum data. The application of possibilistic regression has been examined with a case study. Two data set for winter wheat in Loss Plateau of China and North China Plain have been used. The current finding shows capability of possibilistic regression in estimation of crop yield in data shortage conditions
Evapotranspiration and crop yield modeling using fuzzy linear regression Keywords:
Evapotranspiration and crop yield modeling using fuzzy linear regression authors
Fatemeh Soroush
Assistant Professor Water Eng. Dept., College of Agriculture Valie-Asr University of Rafsanjan Rafsanjan, Iran
Saied Eslamian
Professor Water Eng. Dept., College of Agriculture Isfahan University of Technology Isfahan ۸۴۱۵۶-۸۳۱۱۱, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :