سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

MODELING PRODUCTION OF A POINT-FOCUS PARABOLIC SOLAR STILL USING LOCAL WEATHER DATA AND ARTIFICIAL NEURAL NETWORKS

Publish Year: 1393
Type: Conference paper
Language: English
View: 1,421

This Paper With 13 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ICESE01_078

Index date: 8 June 2014

MODELING PRODUCTION OF A POINT-FOCUS PARABOLIC SOLAR STILL USING LOCAL WEATHER DATA AND ARTIFICIAL NEURAL NETWORKS abstract

A study has been performed to predict distillate production of a point-focus parabolic solar still (PPSS) was operated for seven sunny, relative cloudy and dusty days in October. The aim of this study is to determine the effectiveness of modeling solar still distillate production using artificial neural networks (ANNs) and local weather data. A mathematical model is also presented to predict the thermal losses, and hourly productivity of the PPSS based on energy balance and heat transfer equations. The study used the environmental and operational variables affecting solar still performance, which are the hourly beam solar insolation, hourly air temperature, hourly wind velocity and wind incidence angle. The objectives of the study are to assess the sensitivity of the ANN predictions to different combinations of input parameters as well as to determine the minimum amount of inputs necessary to accurately model the solar still performance. The results showed that the ANN-model gave the best estimation with the accuracy of more than 99%. By using the correlation coefficient (R), it was found that 93-97% of the variance was accounted for by the ANN model. Satisfactory results for the PPSS suggest that, with sufficient input data, the ANN method could be extended to predict the performance of other solar still designs in different climate regimes

MODELING PRODUCTION OF A POINT-FOCUS PARABOLIC SOLAR STILL USING LOCAL WEATHER DATA AND ARTIFICIAL NEURAL NETWORKS authors

Shiva Gorjian

Agricultural Machinery Engineering Department, Faculty of agriculture, TarbiatModares University, Tehran, Iran

teymour tavakkoli hashjin

Agricultural Machinery Engineering Department, Faculty of agriculture, TarbiatModares University, Tehran, Iran

barat ghobadian

Agricultural Machinery Engineering Department, Faculty of agriculture, TarbiatModares University, Tehran, Iran

ahmad banakar

Agricultural Machinery Engineering Department, Faculty of agriculture, TarbiatModares University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Kah A. H., San Q. Y., Guan S. C., Kiat ...
Xiao G., Wang X., Ni M., Wang F., Zhu W., ...
Shatat M., Worall M., and Riffat S., 2013, desalination ...
Khayet M., 2013, "Solar desalination by membrane distillation: Dispersion in ...
Compain P., 2012, "Solar Energy for Water Desalination, " Procedia ...
Qiblawey H., and Banat F., 2008, "Solar thermal desalination technologies, ...
Mellit A., and Kalogirou S. a., 2008, "Artificial intelligence techniques ...
Kalogirou S. A, 2006, "Prediction of flat-plate collector performance parameters ...
Kreider J. F., 1991, "Artificial neural networks demonstration for automated ...
Curtiss P. S., Brandemuehl M. J., and Kreider , F., ...
Kalogirou S., and Bojic M., 2000, "Artificial neural networks for ...
Aly A. A., Zeidan E.-S. B., and Hamed A M., ...
technique, " Energy Build., 43(2-3), pp. 454-457. ...
Fang J. B., Wei J. J., Dong X. W., and ...
Muioz J., Abanades A., and Martinez-Val J. M., 2009, "A ...
Zarate L., Pereira E., Silva J., Vimeiro R., and Diniz ...
نمایش کامل مراجع