Publisher of Iranian Journals and Conference Proceedings

Please waite ..
Publisher of Iranian Journals and Conference Proceedings
Login |Register |Help |عضویت کتابخانه ها

PMU-Based Fault Classification Using Artificial Neural Network for Power Systems Considering Data mismatches

Year: 1392
COI: INCEE01_015
Language: EnglishView: 867
This Paper With 8 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 8 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:


Farzad dehghan - Lorestan Electric Power Distribution Company, IRANdehghan
Masoud dehghan - Lorestan Electric Power Distribution Company
Mohammad Hakimi - Lorestan Electric Power Distribution Company
majid kamalvand - Lorestan Electric Power Distribution Company


Fast advancement in communication and measurement techniques accelerates the development of wide area protection, based on the wide area measurement system. In this study, global information of power system will be introdu ced into the backup protection system. By analyzing and computing real-time phasor measurement unit (PMU) measurements, based on artificial neural network fault classifier (ANNFC), fault type and fault location is determined. Proposed method is implemented on the IEEE ٣٩ buses sample network. Best inputs of ANNFC are the active powers of each phase and the zero sequence currents measured at the two terminals of the transmission line. For each type of faults on a transmission line, ANNFC has one output. The outputs of ANNFC for the fault test patterns, not presented in the training stage, show the accuracy of the ANNFC. The trained ANNFC is trained again by inputs that have measurement errors and data mismatches. The ANNFC outputs are accurate, even if the data are distorted by CT saturation or by data mismatchescaused by delays in the WAP data collection system or measurement errors.


Paper COI Code

This Paper COI Code is INCEE01_015. Also You can use the following address to link to this article. This link is permanent and is used as an article registration confirmation in the Civilica reference:

How to Cite to This Paper:

If you want to refer to this Paper in your research work, you can simply use the following phrase in the resources section:
dehghan, Farzad and dehghan, Masoud and Hakimi, Mohammad and kamalvand, majid,1392,PMU-Based Fault Classification Using Artificial Neural Network for Power Systems Considering Data mismatches,1st Iranian National Conference Electerical Engineering ,Bandar-e Gaz,

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :

  • J. X. Yuan, :Wide area protection and emergency control to ...
  • _ _ [] F. Namdari, L. Hatamvand, and _ Nourizadeh. ...
  • V. Terzija, G. Valerde, D. Cai, P. Regulski, V. Madani, ...
  • R.P. Lippman, Pattern classifcation using neural networks, IEEE Commun. Mag. ...
  • M.R. Agh amohammadi, A. Maghami, "On-Line Dynamic Security Assessment Using ...

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

New Papers

New Researchs

Share this page

More information about COI

COI stands for "CIVILICA Object Identifier". COI is the unique code assigned to articles of Iranian conferences and journals when indexing on the CIVILICA citation database.

The COI is the national code of documents indexed in CIVILICA and is a unique and permanent code. it can always be cited and tracked and assumed as registration confirmation ID.