ResOS, a web application to investigate reservoir operation methods: simulation and optimization
Publish place: international conference on civil engineering, architecture and Urban Sustainable Development
Publish Year: 1392
Type: Conference paper
Language: English
View: 881
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICCAU01_2953
Index date: 20 July 2014
ResOS, a web application to investigate reservoir operation methods: simulation and optimization abstract
Operation policies of reservoirs may be generated by simulation or optimization methods. Water resources management students and/or water system planner often have difficulties employing modern heuristic optimization methods such as Genetic Algorithm (GA) to produce optimum operation policies since these tools are provided in commercial and sophisticated software packages. This paper introduces a web application called ResOS which freely provides simulation and optimization tools (e.g. GA) to produce operation policy for reservoirs. Being developed web-based, ResOS can be used on all internet connected devices such as computers or cell phones. ResOS requires no minimum hardware configuration to run because all calculation modules run on the server side and user device only displays the results. Simulation and optimization methods along with multiple loss functions and performance criteria are explained in this paper. To illustrate the routine of ResOS a real-world reservoir is investigated as a case study
ResOS, a web application to investigate reservoir operation methods: simulation and optimization Keywords:
ResOS, a web application to investigate reservoir operation methods: simulation and optimization authors
Mohammad Amin Jahanpour
Researcher, School of Civil Engineering, Iran University of Science and Technology
Abbas Afshar
Visiting Professor, Department of Land, Air, and Water Resources, University of California, Davis, Ca., USA
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :