سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Effective Partitioning of Input Domains for ALM Algorithm

Publish Year: 1391
Type: Conference paper
Language: English
View: 971

This Paper With 5 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

IPRIA01_147

Index date: 2 August 2014

Effective Partitioning of Input Domains for ALM Algorithm abstract

This paper presents a new and simple algorithm for partitioning the input domain for implementation of Active Learning Method (ALM) algorithm. ALM is a pattern-basedalgorithm for soft computing which uses the Ink Drop Spread (IDS) algorithm as its main engine for feature extraction. In thispaper a simple algorithm is introduced with a few computation cost. In order to evaluate the performance of the proposed algorithm, it is applied to two applications, system modeling andpattern recognition. Simulation results show the effectiveness of our algorithm in specifying the appropriate points for dividing the inputs domains

Effective Partitioning of Input Domains for ALM Algorithm Keywords:

Active learning method (ALM) , fuzzy inference algorithm , ink drop spread (IDS) , memristor-crossbar

Effective Partitioning of Input Domains for ALM Algorithm authors

Iman Esmaili Paeen Afrakoti

Ph.D student at the Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

Aboozar Ghaffari

Ph.D student at the Department of Electrical Engineering,Sharif University of Technology, Tehran, Iran

Saeed Bagherishouraki

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
_ Shouraki and A. Rohani, _ based Hardware Implenmen tation ...
S .B. Shouraki ad N. Honda, :-Recursive Fuzzy Modeling Based ...
Interpolation, _ Jourhal of Advanced Comp utational Intelligence, vol. 3, ...
S. A. Shahdi and . B. shouraki. "Supervised Active Learning ...
Sinulation", Inter ational Conference OT1 Infornatio n/Intelligence Systems, Japan, 1998. ...
S. B. Shouraki and N. Honda. "Hardwvare Simulation of Brain ...
_ _ S _ _ Processing Unit for a New ...
_ _ _ _ hardware inmp lementatio. of IDS method, ...
Y. Sakurai. _ Study of the Learning Control Method Using ...
M. Murakarmi ad N. Honda, "A study on the modeling ...
_ _ structural optimization technique for IDS modeling, " Proceedings ...
نمایش کامل مراجع