سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Short-Term Load Forecasting in Power Systems Using Emotional Critic Based Fuzzy Approach

Publish Year: 1382
Type: Conference paper
Language: English
View: 1,767

This Paper With 8 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

PSC18_040

Index date: 18 May 2007

Short-Term Load Forecasting in Power Systems Using Emotional Critic Based Fuzzy Approach abstract

Load forecasting is an important problem in the operation and planning of electrical power generation. To minimize the operating cost, electric supplier will use forecasted load to control the number of running generator unit. Short-term load forecasting (STLF) is for hour to hour forecasting and important to daily maintaining of power plant. Most important factors in load forecasting includes past load history, calendar information (weekday, weekend, holiday, season, etc.) and weather information (instant temperature, average temperature, peak temperature, wind speed, etc.). The forecaster will treat past data as a time series and many kinds of approaches have been applied on this problem. In this paper we present an application of emotional learning to short term load forecasting. Emotional learning is a family of intelligent algorithms which can be used for time series prediction, classification, control and identification. This method is applied to short term load forecasting for actual data. The method is relatively simple, and effectively uses historical data to provide load forecasts. Simulation results confirm good accuracy of the emotional learning approach to load forecasting.

Short-Term Load Forecasting in Power Systems Using Emotional Critic Based Fuzzy Approach Keywords:

Short-Term Load Forecasting in Power Systems Using Emotional Critic Based Fuzzy Approach authors

Farzan Rashidi

Control Research Department, Engineering Research Institute of JERCEN, Tehran, Iran

Mehran Rashidi

Hormozgan Regional Electric Co. Bandar-Abbas, Iran

Hamid Monavar

Hormozgan Regional Electric Co. Bandar-Abbas, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
. S. Rahman and O. Hazim, ،0 A generalized knowledg ...
S. Rahman and G. Shrestha, *A priory vector based technique ...
. J. Fan and J. D. McDonald, ،0A Real-Time I ...
. G. N. Mbamalu and M. E. El-Hawary, _ Forecasting ...
. M. T. Hagan and S. M. Behr, ،0The Time ...
-Term Forecasting of Nodal Active and Reactive Short؛، [6]. D. ...
. Drossu and Z. Obradovic, *Rapid Design of Neural Network ...
. Tomonobu Senjyu, Hitoshi Takara, Katsumi Uezato, Toshihisa Funabashi, 4One-Hour- ...
. D.C. Park, M. A. El-Sharkawi, R. J. Marks II, ...
. J. S. McMenamin, F. A. Monforte, Using Neural Networks ...
. A. Khotanzad. M. H. Davis, A. Abaye, D. J. ...
. S. T. Chen, D. C. Yu, A. R. Moghaddamj ...
. Rashidi, F., Rashidi, M., Hashemi Hosseini, A., ،Emotional temporal ...
نمایش کامل مراجع