Intelligent simulation of river process using ANN and ANFIS
Publish place: International Conference on Nonlinear Systems and Optimization of Electrical and Computer Engineering
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,131
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NSOECE01_038
تاریخ نمایه سازی: 1 مهر 1394
Abstract:
In the present study, artificial neural networks (ANNs), neuro-fuzzy (NF), multi linear regression (MLR) and conventional sediment rating curve (SRC) models are considered for time series modeling of suspended sediment concentration (SSC) in rivers. As for the artificial intelligence systems, feed forward back propagation (FFBP) method and Sugeno inference system are used for ANNs and NF models, respectively. The models are trained using daily river discharge and SSC data belonging to Tezerjan gauging station in Yazd province in Iran. Obtained results demonstrate that ANN and NF models are in good agreement with the observed SSC values; while they depict better results than MLR and SRC methods. For example, the determination coefficient is 0.616 for NF model, while it is 0.443, 0.216 and 0.181 for ANN, MLR and SRC models, respectively.
Keywords:
Authors
Mojtaba keykhosravi
Graduate Student, Young Researchers Club, Computer Engineering Department, Islamic Azad University, Sirjan, Iran,
Mansour Rajabi
PhD Student, Department of Water Resource, Agriculture and Natural Resources University, Sari, Iran,
Saeed Rajabi
Master Student, Department of Electrical and Control Engineering, Tarbiat Modares University, Tehran, Iran,
Mahin Jokar
Graduate, Department of Physical Chemistry, Islamic Azad University Firooz Abad, Iran,
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :