IMPROVING MOBILE ROBOT LOCALIZATION USING EXTENDED KALMAN FILTER AND FUZZY LOGIC IN THE PRESENCE OF COLORED NOISE
Publish place: International Conference on Nonlinear Systems and Optimization of Electrical and Computer Engineering
Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,111
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NSOECE01_053
تاریخ نمایه سازی: 1 مهر 1394
Abstract:
In the present paper, a combination of Extended Kalman Filter and fuzzy logic has been proposed to optimally localize mobile robot in the presence of colored noise in system equations and observations vector. Observation vector is formed through having kinematic equations of mobile robots. For simultaneous positioning of mobile robot, it is firstly assumed that state and observations equations are contaminated with white uncorrelated noise with the zero mean and certain variance. Then, assuming that these white noises have passed through second-order filters, mobile robot localization problem is formulated through considering the resulted color noises. To this end, Extended Kalman Filter has been used to propose localization problem. To implement the mentioned algorithm, process noise covariance matrix can be estimated using various methods such as Taylor Series which has been employed in this research. On one hand, supposing that there is not so much information regarding process noise covariance matrix, fuzzy logic has been presented to estimate process noise covariance. Based on information received from innovation vector, fuzzy logic performs the simultaneous updating of the variance. The results obtained from simulation have been presented in low, average and high variances and the proposed localization performance have been investigated based on estimation accuracy
Keywords:
Authors
Nasrin Majidi
Islamic Azad University-South Tehran Branch, Tehran
Hamid Khaloozadeh
Khajeh Nasir Toosi University of Technology, Tehran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :