سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

ارائه یک روش ترکیبی برای دسته بندی متون فارسی بوسیله تکنیک رای گیری موازی

Publish Year: 1394
Type: Conference paper
Language: Persian
View: 1,079

This Paper With 7 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

SENACONF02_096

Index date: 21 November 2015

ارائه یک روش ترکیبی برای دسته بندی متون فارسی بوسیله تکنیک رای گیری موازی abstract

بررسی ها و مطالعات نشان میدهند که روشهای دسته بندی متون مانند بیز ساده و ماشین بردار پشتیبان نمی توانند کیفیت دسته بندی را از یک حدی بیشتر افزایش دهند اما با بهره گیری از روش های ترکیبی، می توان کیفیت دسته بندی را ارتقا داد. روش های بیز ساده و الگوریتم درخت تصمیم در متون لاتین کارایی خوبی را از خود نشان داده اند. با توجه به پایگاه های اطلاعاتی و همچنین سایت های ثبت اسناد کشور این روشها در متون فارسی انجام نشده اند. در این پژوهش سعی خواهد شد تا یک مدل دسته بندی خودکار را با استفاده از ترکیبی از الگوریتم ها و تکنیک های متن کاوی بیز ساده و الگوریتم درخت تصمیم برای متون فارسی فراهم کنیم که بتوان با استفاده از این مدل، متون فارسی را به صورت خودکار باکار آیی و دقت بالا دسته بندی کرد. جهت بالا بردن کارایی نهایی دسته بندی اسناد متنی، هدف در این پژوهش استفاده از ترکیبی از دسته بندها بجای استفاده از یک دسته بند منفرد میباشد. نتایج نشان میدهد که استفاده از دسته بند ترکیبی عملکرد بهتری نسبت به دسته بندهای منفرد خواهد داشت.

ارائه یک روش ترکیبی برای دسته بندی متون فارسی بوسیله تکنیک رای گیری موازی Keywords:

ارائه یک روش ترکیبی برای دسته بندی متون فارسی بوسیله تکنیک رای گیری موازی authors

عارف سیاحی

آموزشکده فنی و حرفه ای سما،دانشگاه آزاد اسلامی واحد سوسنگرد، سوسنگرد، ایران

سید محسن هاشمی

آموزشکده فنی و حرفه ای سما،دانشگاه آزاد اسلامی واحد سوسنگرد، سوسنگرد، ایران

سعید مزرعه

آموزشکده فنی و حرفه ای سما،دانشگاه آزاد اسلامی واحد سوسنگرد، سوسنگرد، ایران

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Azam, N., Yao, J. T., 2012. Comparison of Term Frequency ...
Baoli, L., Shiwen, Y., Qin, L, 2003. An improved k-nearest ...
Bell, D. A., Guan, J. W., Bi, Y. X., 2005. ...
Bryll, R., Osuna, R. G., Quek, F., 2003. Attribute Bagging: ...
Klinkenberg, R., Joachims, T., 2000. Detecting concept drift with support ...
Uguz, H., 2011. A Two-Stage Feature Selection Method for Text ...
Larkey, L. S., Croft, W. B., 1996. Combining classifiers in ...
Sebastiani, F., 2002. Machine Learning in Automated Text C ategorization, ...
Arturo, M. R., 2006. Automatic Text Categorization of documens in ...
Peng, F., Schuurmans, D., Wang, S., 2003. Language and Task ...
Lan, M., Tan, C. L., 2007. Supervised and Traditional Term ...
نمایش کامل مراجع

مقاله فارسی "ارائه یک روش ترکیبی برای دسته بندی متون فارسی بوسیله تکنیک رای گیری موازی" توسط عارف سیاحی، آموزشکده فنی و حرفه ای سما،دانشگاه آزاد اسلامی واحد سوسنگرد، سوسنگرد، ایران؛ سید محسن هاشمی، آموزشکده فنی و حرفه ای سما،دانشگاه آزاد اسلامی واحد سوسنگرد، سوسنگرد، ایران؛ سعید مزرعه، آموزشکده فنی و حرفه ای سما،دانشگاه آزاد اسلامی واحد سوسنگرد، سوسنگرد، ایران نوشته شده و در سال 1394 پس از تایید کمیته علمی دومین کنگره سراسری فناوریهای نوین ایران با هدف دستیابی به توسعه پایدار پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله متن ، متن کاوی ، روش ترکیبی ، رای گیری هستند. این مقاله در تاریخ 30 آبان 1394 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 1079 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که بررسی ها و مطالعات نشان میدهند که روشهای دسته بندی متون مانند بیز ساده و ماشین بردار پشتیبان نمی توانند کیفیت دسته بندی را از یک حدی بیشتر افزایش دهند اما با بهره گیری از روش های ترکیبی، می توان کیفیت دسته بندی را ارتقا داد. روش های بیز ساده و الگوریتم درخت تصمیم در متون لاتین کارایی خوبی را ... . این مقاله در دسته بندی موضوعی متن کاوی طبقه بندی شده است. برای دانلود فایل کامل مقاله ارائه یک روش ترکیبی برای دسته بندی متون فارسی بوسیله تکنیک رای گیری موازی با 7 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.