A COMPREHENSIVE SPATIAL UNCERTAINTY MODEL FOR AN OBJECT-BASED GIS
Publish place: Geomatics 1382
Publish Year: 1382
Type: Conference paper
Language: English
View: 3,124
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
GEO82_29
Index date: 16 December 2005
A COMPREHENSIVE SPATIAL UNCERTAINTY MODEL FOR AN OBJECT-BASED GIS abstract
Geospatial Information systems (GISs) play an active role in decision-making processes in many disciplines, research, and/or management using spatial data, at the global, regional, local or municipal level. More effective use of GIS, however, requires explicit knowledge of the uncertainty inherent in the data, particularly positional data. This becomes more important as the potential impact of decisions based upon GIS increases. The widespread use of GIS as a decision support system is, therefore, dependent on the development of formal modeling of uncertainty in spatial databases. This paper focuses on positional errors that refer to the discrepancy between the true location of certain geometric primitives and their measured or expressed locations. If true values are not available, uncertainty is substituted for error. The current uncertainty models of geometric elements are critically evaluated using analytical methods. Particular emphasis is placed on modeling uncertainty of line objects. The result of a case study on uncertainty assessment showed that magnitude of modeling uncertainty versus measurement uncertainty can be considerable which is usually ignored in GIS analysis.
A COMPREHENSIVE SPATIAL UNCERTAINTY MODEL FOR AN OBJECT-BASED GIS Keywords:
A COMPREHENSIVE SPATIAL UNCERTAINTY MODEL FOR AN OBJECT-BASED GIS authors
Reihaneh Batouli
Department of Surveying and Geomatic Eng., Faculty of Engineering, University of Tehran,
Mahmoud R Delavar
Department of Surveying and Geomatic Eng., Faculty of Engineering, University of Tehran,
Ali A. Alesheikh
Department of Geodesy and Geomatic Eng., Civil Engineering Faculty, K.N.T University of Technology,
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :