Application of Monte Carlo for Localizing a Mobile Robot using Odometry and Laser scanner Data
Publish place: International Conference on Science and Engineering
Publish Year: 1394
Type: Conference paper
Language: English
View: 1,044
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICESCON01_0385
Index date: 14 February 2016
Application of Monte Carlo for Localizing a Mobile Robot using Odometry and Laser scanner Data abstract
Most robotic missions would be impossible unless the position of the robot at every moment is known. Accurate localization plays an important role in robotic motion control. Research has shown that probability-based methods suggest most reliable solutions in this regard. Localization based on particle-filtering is among most efficient methods that provides a model by using a set of weighted samples and based on Monte Carlo’s method. The presented work describes how a ROS-based control system is used with a Pioneer 3-AT robot for indoor mapping and localization. Main purpose of this paper is to demonstrate accuracy of domestication and an increase in accuracy of localization. For experiments, one real environment has been tested. Some implementation was done in C and Python. This paper has also compared Monte Carlo’s output results to odometry demonstrating that more accurate results are provided the purpose is reduction of positioning errors by Monte Carlo’s method.
Application of Monte Carlo for Localizing a Mobile Robot using Odometry and Laser scanner Data Keywords:
Application of Monte Carlo for Localizing a Mobile Robot using Odometry and Laser scanner Data authors
Yasamin Keshmiri Esfandabadi
Islamic Azad University Qazvin, Iran
Ahmad Fakharian
Islamic Azad University Qazvin, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :