سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

An accurate model for Latent Semantic Analysis (LSA) by Singular Value Decomposition (SVD)

Publish Year: 1394
Type: Conference paper
Language: English
View: 844

This Paper With 7 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ICESCON01_0397

Index date: 14 February 2016

An accurate model for Latent Semantic Analysis (LSA) by Singular Value Decomposition (SVD) abstract

This paper presents a conceptual model to retrieve latent semantic automatically. The model specifies relations among documents and query based on latent semantic mapping. To achieve the goal, Singular Value Decomposition (SVD) and the concept of eigenvectors and eigenvalues is used which they are a theory in linear algebra. SVD has many usage in science and engineering. Many efforts is done to retrieve latent semantic and relation among texts, images and etc. By singular value decomposition can extract latent semantic between text or images with higher accuracy. This paper uses SVD to extract the latent semantic between documents and queries. Results show which SVD provides a complete automatic method to retrieve latent semantics.

An accurate model for Latent Semantic Analysis (LSA) by Singular Value Decomposition (SVD) Keywords:

Singular Value Decomposition (SVD) , latent semantic analysis (LSA) , Eigenvalues , Eigenvectors

An accurate model for Latent Semantic Analysis (LSA) by Singular Value Decomposition (SVD) authors

Neda Mohammadi

Department of Computer Engineering and IT, Shiraz University of Technology, Shiraz, Iran

Hadi Mehdipour

Department of Shahid Chamran, Technical and Vocational University, Kerman, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Deerwester, Scott C., Susan T. Dumais, Thomas K. Landauer, George ...
Ding, Chris. Li , Tao and Peng , Wei.(2112). Nonnegative ...
Emrah , Ergul. Lt, Jr. Grade , Asst. Prof. Nafiz ...
Wiemer, Peter. (2114). Latent semantic analysis. In Proceedings of the ...
نمایش کامل مراجع