An accurate model for Latent Semantic Analysis (LSA) by Singular Value Decomposition (SVD)
Publish place: International Conference on Science and Engineering
Publish Year: 1394
Type: Conference paper
Language: English
View: 844
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICESCON01_0397
Index date: 14 February 2016
An accurate model for Latent Semantic Analysis (LSA) by Singular Value Decomposition (SVD) abstract
This paper presents a conceptual model to retrieve latent semantic automatically. The model specifies relations among documents and query based on latent semantic mapping. To achieve the goal, Singular Value Decomposition (SVD) and the concept of eigenvectors and eigenvalues is used which they are a theory in linear algebra. SVD has many usage in science and engineering. Many efforts is done to retrieve latent semantic and relation among texts, images and etc. By singular value decomposition can extract latent semantic between text or images with higher accuracy. This paper uses SVD to extract the latent semantic between documents and queries. Results show which SVD provides a complete automatic method to retrieve latent semantics.
An accurate model for Latent Semantic Analysis (LSA) by Singular Value Decomposition (SVD) Keywords:
An accurate model for Latent Semantic Analysis (LSA) by Singular Value Decomposition (SVD) authors
Neda Mohammadi
Department of Computer Engineering and IT, Shiraz University of Technology, Shiraz, Iran
Hadi Mehdipour
Department of Shahid Chamran, Technical and Vocational University, Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :