An Efficient Algorithm on Based GLCM-PNN to Diagnose Malaria
Publish place: International Conference on Science and Engineering
Publish Year: 1394
Type: Conference paper
Language: English
View: 965
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
ICESCON01_0409
Index date: 14 February 2016
An Efficient Algorithm on Based GLCM-PNN to Diagnose Malaria abstract
Malaria is a serious infectious disease, and early and accurate diagnosis is necessary in order to keep it under control. In this paper, we propose an efficient algorithm to diagnose malaria using Gray-Level Co-Occurrence Matrix (GLCM) and a probabilistic neural network (PNN). In the proposed algorithm, after pre-processing, the red blood cells were separated from images using an active contour model. Consequently, 44 features were extracted from the images using GLCM. Finally, the features were classified into normal and abnormal groups by PNN.The results show that compared to previous studies, the proposed algorithm led to improved results and accurately assessed 557.99 of 851 hospital records.
An Efficient Algorithm on Based GLCM-PNN to Diagnose Malaria Keywords:
An Efficient Algorithm on Based GLCM-PNN to Diagnose Malaria authors
Alireza Akhlaghi
M.S. Student, Dept. Computer and Informatics Engineering, Payame Noor UniversityQeshm, Iran
Mehdi Khalili
Assistant Professor, Dept. Computer and Informatics Engineering, Payame Noor University Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :