سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

An Efficient Algorithm on Based GLCM-PNN to Diagnose Malaria

Publish Year: 1394
Type: Conference paper
Language: English
View: 965

This Paper With 7 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ICESCON01_0409

Index date: 14 February 2016

An Efficient Algorithm on Based GLCM-PNN to Diagnose Malaria abstract

Malaria is a serious infectious disease, and early and accurate diagnosis is necessary in order to keep it under control. In this paper, we propose an efficient algorithm to diagnose malaria using Gray-Level Co-Occurrence Matrix (GLCM) and a probabilistic neural network (PNN). In the proposed algorithm, after pre-processing, the red blood cells were separated from images using an active contour model. Consequently, 44 features were extracted from the images using GLCM. Finally, the features were classified into normal and abnormal groups by PNN.The results show that compared to previous studies, the proposed algorithm led to improved results and accurately assessed 557.99 of 851 hospital records.

An Efficient Algorithm on Based GLCM-PNN to Diagnose Malaria authors

Alireza Akhlaghi

M.S. Student, Dept. Computer and Informatics Engineering, Payame Noor UniversityQeshm, Iran

Mehdi Khalili

Assistant Professor, Dept. Computer and Informatics Engineering, Payame Noor University Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Lee, W. K .)2119(.Object tracking based on the modular active ...
نمایش کامل مراجع