Fault Diagnosis of Wind Turbine Based on Current and Voltage Observation by SVM Method

Publish Year: 1394
نوع سند: مقاله کنفرانسی
زبان: English
View: 722

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICESCON01_0463

تاریخ نمایه سازی: 25 بهمن 1394

Abstract:

In this paper, the faults of sensors of blade positions, blade step mover and generator and rotor speed sensors are analyzed. Based on the falut analysis, these faults are the most intensive and have more importance compared to the other faults; the internal faults of generator and converters are neglected in this research because of the unnecessary complication and expansion. Then using the dynamic model of wind energy conversion, a fault detection system with artificial neural network of support vector machine (SVM) is used for fault detection in wind turbine with varying speed including three blades and power electronic devices. This can be used to detect the occurring faults in blade position sensors, blade step mover and generator and rotor speed sensors

Keywords:

Wind Turbine , Support Vector Machine (SVM) , Fault Detection and Isolation , Power System

Authors

Sajjad Heydarpur

Department of Electrical Engineering, Malekan Branch, Islamic Azad University, Malekan, Iran

Shahrokh Jalili

Department of Electrical Engineering, Maragheh Branch, Islamic Azad University, Maragheh, Iran

Huseyn Tohidi

Department of Electrical Engineering, Malekan Branch, Islamic Azad University, Malekan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Fernandez -Cantia, R.M., Blesaa, J., Tornil-Sina, S., and Puig, V. ...
  • Zhi-Ling, Y., Bin, W., Xing-Hui, D. and Hao, L. (2012). ...
  • Liu, W.Y., Gao, Q.W., Ye, G., Ma, R., Lu, X.N., ...
  • Feng, Zh., Qin, S. and Liang, M. (2016). T ime-frequency ...
  • Hang, J., Zhang, J., and Cheng, M. (2015). Application of ...
  • Liu, W.Y., Tang, B.P., Han, J.G., Lu, X.N., Hu, N.N. ...
  • Zhou, A., Yu, D., and Zhang, W. (2015). A research ...
  • Hu, A., Yan, X., and Xiang, _ (2015). A new ...
  • Badihi, H., Zhang Y, and Hong, H. (2015). Wind turbine ...
  • Sloth, Ch., and Esbensen, Th. (2009). Fault Diagnosis and Fault ...
  • Fitzgerald, , A. E. (1990). Electric Machinery, 5th Ed., McGraw-Hill, ...
  • IEEE Standard 112-1991 (2004). IEEE Standard test procedure for polyphase ...
  • Cristianini N., and Shawe-Taylor, J. (2000). An introduction to support ...
  • Krzysztof, P. (2008), Artificial Neural Networks for the Modelling and ...
  • نمایش کامل مراجع