Multiuser-MIMO Detector schemes in 3GPP LTE-TM5: performance-data rates trade off
Publish place: International Conference on Science and Engineering
Publish Year: 1394
Type: Conference paper
Language: English
View: 884
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICESCON01_0479
Index date: 14 February 2016
Multiuser-MIMO Detector schemes in 3GPP LTE-TM5: performance-data rates trade off abstract
This paper focuses on Multiuser-MIMO (MU-MIMO) technique in 3GPP LTE; a reliable technique to enhance the overall system capacity, especially in TM5, TM8, and TM9. However due to low-resolution LTE-TM5 precoders, co-scheduled users in MU-MIMO may still experience a strong inter-user-interference (IUI) in small cells. To overcome the IUI, an interference-aware (IA) detector scheme is utilized which exploits the structure of the interferer data in the detection. In this paper, we propose a modified IA (MIA) detector scheme that improves the data rates and complexity of IA with an identical error performance. We evaluate the performance of IA and MIA detectors over single-user (SU) detector through computer simulations. Our simulation results depict that both IA and MIA outperform the SU detector in MU-MIMO LTE-TM5. Generally, we observe that the MIA detector achieves significantly higher data rates compared to the IA, especially in higher modulation orders and if the users have multiple receive antennas. Furthermore, the error performance may still be satisfactory if both the desired and interferer users have a same modulation order
Multiuser-MIMO Detector schemes in 3GPP LTE-TM5: performance-data rates trade off Keywords:
Multiuser-MIMO Detector schemes in 3GPP LTE-TM5: performance-data rates trade off authors
Hamid Rajabi
Student Member, IEEE, Faculty of Engineering, Birjand University, Birjand, Iran
Naaser Neda
Assistant professor, Faculty of Engineerig, Birjand University, Birjand, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :