Adaptive Genetic Algorithms Based on Learning Classifier Systems
Publish place: 9th Annual Conference of Computer Society of Iran
Publish Year: 1382
Type: Conference paper
Language: English
View: 2,172
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
ACCSI09_053
Index date: 24 January 2008
Adaptive Genetic Algorithms Based on Learning Classifier Systems abstract
Genetic Algorithms (GA) emulate the natural evolution process and maintain population of potential solutions to a given problem. But GA uses static configuration parameters such as crossover type, crossover probability and selection operator, among those, to emulate this inherently dynamic process. Because of dynamic behavior of GA and changes in population parameters in each generation, using adaptive configuration parameters sounds a good idea. This idea is considered in some researches about GA [1, 2, 3, and 4] by various authors. In this research a new modified structure for GA is introduced which called Adaptive GA based on Learning classifier systems (AGAL). AGAL uses a learning component to adapt its structure as population changes. This learning component uses domain knowledge which is extracted from the environment to adapt GA parameter settings.
Adaptive Genetic Algorithms Based on Learning Classifier Systems Keywords:
Adaptive Genetic Algorithms Based on Learning Classifier Systems authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :