Optimal Placement of Phasor Measurement Units for enhancing Observability of Power Systems by Using Genetic Algorithm
Publish Year: 1394
Type: Conference paper
Language: English
View: 534
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
ICEEE07_105
Index date: 8 May 2016
Optimal Placement of Phasor Measurement Units for enhancing Observability of Power Systems by Using Genetic Algorithm abstract
With the increasing expansion of power grid in the recent years, the need for new monitoring and controlling systems for better control and exploitation of power systems, is felt more than ever. In the meantime, the use of synchronous phasor measurement units (PMU) has recently attracted the attention and interest of the researchers and designers of power grids. These units, by measuring the voltage and current phasor with high-speed, provide the conditions for accurate and real-time observability of the system. The important point here is that the necessary condition for the full observability of the power system is the optimal placement of these units in the power grid. In this paper, the primary objective is the optimal placement of the PMU units in a conventional power grid by using genetic algorithms to enhance the observability of the system; then, in the end, by comparing the results obtained from the proposed method with other conventional methods, the efficiency of the model is assessed.
Optimal Placement of Phasor Measurement Units for enhancing Observability of Power Systems by Using Genetic Algorithm Keywords:
Optimal Placement of Phasor Measurement Units for enhancing Observability of Power Systems by Using Genetic Algorithm authors
M. Afroozeh
Dept. of Engineering Payam Golpaygan Institute Golpaygan, Iran
AA. Ghadimi
Dept. of Engineering University of Arak Arak, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :