Characterization of the plus fraction using distribution functions For Iranian gas condensate reservoir
Publish place: 5th International Congress on Chemical Engineering
Publish Year: 1386
Type: Conference paper
Language: English
View: 1,753
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICHEC05_293
Index date: 27 January 2008
Characterization of the plus fraction using distribution functions For Iranian gas condensate reservoir abstract
In order to describe phase behavior of reservoir fluids, well-predict phase equilibrium and volumetric properties of gas condensate during production operation a true characterization procedure is required for boiling point and plus fractions of reservoir fluids. Since there isn't a general distribution function for petroleum fractions and gas condensates, developing a distribution function have been the main objectives of many studies. In this study a comprehensive distribution function is presented for the Iranian gas condensate reservoirs. Since in the reservoir fluids commonly used distribution function are not valid for larger carbon numbers, in the present work the new distribution function truncated at some finite value of the characterization variable. The results calculated using the new distribution function is in good agreement with experimental data obtained from reservoirs. The results obtained from nine commonly used distribution functions are also compared with the new distribution function and it is shown the accuracy of the new function.
Characterization of the plus fraction using distribution functions For Iranian gas condensate reservoir Keywords:
Characterization of the plus fraction using distribution functions For Iranian gas condensate reservoir authors
Khalaj hedayati
Faculty of Engineering University of Tehran, Iran Chemical Engineering Department
Edalat
Faculty of Engineering University of Tehran, Iran Chemical Engineering Department
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :