A Review and Comparison on Tourism Recommender Systems
Publish place: First International Conference on Information Technology
Publish Year: 1394
Type: Conference paper
Language: English
View: 889
- Certificate
- I'm the author of the paper
Export:
Document National Code:
FBFI01_095
Index date: 30 July 2016
A Review and Comparison on Tourism Recommender Systems abstract
In the last decade, tourism information in the Web and the number of its users have risen. All of this information can be beneficial for users planning their trips to unknown destination. Therefore, Tourism Recommender Systems (TRSs) have attracted attention of researchers. This field has direct relevance to user interests and preferences. Selecting tourism attractions to visit a destination is one of main steps of trip plan. Although most TRSs currently focus on the first step, there are systems developed to recommend tourism attractions. In this review, we briefly explain characteristics of these TRSs in recent years (since 2008). The features we consider are: Recommendation algorithm that the designed TRS is based on, the Platform on which TRS is implemented, Context-aware, Ontology and multimedia features. Furthermore, the Functionality of TRSs are compared from the following points of views: The way of obtaining information for user modeling, Applied data mining techniques and finally factors for evaluating system.
A Review and Comparison on Tourism Recommender Systems Keywords:
A Review and Comparison on Tourism Recommender Systems authors
Maryam Alizadeh
Information Technology Department, Pouyandegan-E-Danesh Institute of Higher Education, Chalus, Iran
Jamshid Bagherzadeh
Faculty of Information Technology Department, Urmia University, Urmia, Iran
Reza Tavoli۳
Faculty of Information Technology Department, Azad Islamic University of Chalus, Chalus, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :