سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Design and function of Ejector

Publish Year: 1394
Type: Conference paper
Language: English
View: 656

This Paper With 16 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ELEMECHCONF03_0208

Index date: 30 July 2016

Design and function of Ejector abstract

The principle is demonstrated by air moving over the top of a piece of paper is moving quicker than the air underneath. Thus, the local pressure on the top surface of the paper is less than on the underside. The resulting pressure imbalance causes the paper to rise. This shows a length of pipe which includes a valve. The pipe is arranged to discharge to atmosphere. At the point of discharge there is a restriction (or a nozzle). The upstream side of the pipe is connected to a pressure source. The valve is closed so there is no flow. Upstream of the valve there is pressure energy. The arrangement is very similar to that of a garden hose connected to a domestic water tap When the valve is opened the fluid can pass through the pipe and discharged out of the end. Because there is a nozzle at the discharge of the pipe, we can make the following observations: a) There is a pressure on the upstream side of the nozzle. b) A jet of fluid, moving faster than the fluid within the pipe, emerges from the nozzle.on the upstream side of the nozzle there is high pressure and low velocity and at the nozzle discharge there is low pressure and high velocity. The nozzle has converted the pressure energy available upstream of the nozzle into kinetic (or velocity) energy, if we were able to see the surrounding air in the region of the nozzle discharge, we would see that there would be eddy currents of air, circulating around the jet. In other words, the jet of fluid emerging from the nozzle has imparted some of it‟s kinetic energy onto the surrounding air. If we then placed a tube with open ends around the area of the nozzle discharge, we would see that the eddy currents had disappeared and that they had been replaced by a steady flow of air moving through the tube, in a direction from left to right, as shown in the diagram. If we then blank off the upstream end of the tube and added a side inlet, we would see that the air would be sucked in through the side inlet and discharged from the end of the tube. We now have a simple device that is capable of pumping the surrounding gas. This is a very basic form of an Ejector. The „device‟ uses the available pressure energy in a fluid to do work on (pump) a secondary fluid.

Design and function of Ejector Keywords:

Design and function of Ejector authors