A New Method for Ct Image Segmentation of Liver Tumor Based on Support Vector Machine and Genetic Optimization Parameter
Publish place: The Second National Conference on New Approaches in Computer and Electrical Engineering
Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 739
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
BPJ02_206
تاریخ نمایه سازی: 11 آبان 1395
Abstract:
Liver cancer is one of the major death factors in the world. Transplantation and tumor removal are two main therapies in common clinical practice. Both tasks need image assisted planning and quantitative evaluations. Both tasks need image assisted planning and quantitative evaluations. Automatic liver segmentation is required forcorresponding quantitative evaluations. Conventional approaches in liver segmentation consist of finding the initial liver border followed by tuning the border to thefinal mask. finding the liver initial border is of great importance as the latter step largely depends on the initial step. Segmentation of CT images to diagnose liver tumors,is faced with constraints. Some of these limitations, Speed, cost and accuracy. in this paper, from Support vector machines with minimal user intervention to be used toprecise segmentation. The genetic algorithm was used to features extraction of the CT images of liver tumors. Combining support vector machine and genetic algorithm,accuracy and speed obtained of diagnosis and segmentation is tumor. The results of the proposed method, Showed an improvement in our way.
Keywords:
Authors
Sedigheh Ahmadi
Department of Computer Engineering,Arak branch,Islamic Azad University,Arak,Iran,
Abbas Karimi
Department of Computer Engineering,Arak branch,Islamic Azad University,Arak,Iran,
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :