A MapReduce-based online Image Retrieval System using Bag-of-Words Model
Publish Year: 1394
Type: Conference paper
Language: English
View: 693
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
KBEI02_037
Index date: 24 January 2017
A MapReduce-based online Image Retrieval System using Bag-of-Words Model abstract
Due to the increasing variety and quantity of data in databases, retrieving the desired images among massive images storage becomes a challenge. Hence, many image retrieval methods are applied on one or some static datasets and the steps of features extraction and similarity comparison are performed on the dataset images as offline. To address the challenge, we propose an online content-based image retrieval (CBIR) system from huge datasets by applying MapReduce distributed computing model. In the proposed method, images features and their similarity comparison are computed during the retrieval stage. In feature extraction step, similar to most large-scale image retrieval systems, we employ the bag-of-words model to extract the color and edge histograms from images. Experimental results on the Corel dataset demonstrate that the proposed method improves retrieval accuracy in comparison to the state-of-the-art methods significantly and it is flexible against each database.
A MapReduce-based online Image Retrieval System using Bag-of-Words Model Keywords:
A MapReduce-based online Image Retrieval System using Bag-of-Words Model authors
Alireza Pourreza
Department of Electrical & Computer Engineering Semnan University Semnan, Iran
Kourosh Kiani
Department of Electrical & Computer Engineering Semnan University Semnan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :