Investigating the impact of spatial and temporal coefficients on numerical solution of kinematic wave using Preissmann scheme
Publish place: 7th Iranian Hydraulic Conference
Publish Year: 1387
نوع سند: مقاله کنفرانسی
زبان: English
View: 2,058
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IHC07_079
تاریخ نمایه سازی: 10 مرداد 1387
Abstract:
The finite difference solution of kinematic waves using Pressmann scheme is the main issue of this research. The Pressmann scheme depends on several weighting coefficients which appear in the discretization of temporal and spatial partial derivatives. The objective of the curent study is to investigate the sensitivity of the solution to these weighting coefficients and to introduce some limitations on the coefficients in terms of numerical stability. A numerical model using Pressmann scheme is developed and verified for solution of kinematic wave equations. The sensitivity analysis is carried out to explore the impact of weighting coefficients on the results. The results of the research show that the Preissmann finite difference soulution of kinematic waves is significantly sensitive to the weighting coefficients. The solution becomes unstable for some values of the spatial and temporal coefficients. Moreover, as the temporal and/or spatial coefficients increase, the degree of attenuation increases as well. Based on the von Neumann stability analysis, a relationship which constrains the weighting coefficients for the stabiligy is presented at the end.
Keywords:
Authors
M. Mosaffa
Dept.of Civil and Environmental Engineering, Shiraz University, Shiraz.
M.J. Abedini
Dept.of Civil and Environmental Engineering, Shiraz University, Shiraz.
M.R. Hashemi
Dept. of Water Engineering, Shiraz University, Shiraz.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :