A (2n+1) DIMENSIONAL LINEAR VECTOR FIELD
Publish place: 38th Annual Iranian Mathematics Conference
Publish Year: 1386
Type: Conference paper
Language: English
View: 2,218
متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.
- Certificate
- I'm the author of the paper
Export:
Document National Code:
AIMC38_240
Index date: 18 August 2008
A (2n+1) DIMENSIONAL LINEAR VECTOR FIELD abstract
It has been shown that the integral curves of a linear vector field X in R3 described by a matrix of the from Can be:1) helices with common axes and the same parametr, if rank [AC]=3. 2)cricles which lie in planes parallel to aech other and which have centers on the axis perpendicular to those paraller planes, if rank [AC]= 2. 3)parallel straight lines, if rank [AC]=1 The results of Karger and Novak are by us to R2n+1. It is shown that all the results are also valid in the general case.
A (2n+1) DIMENSIONAL LINEAR VECTOR FIELD Keywords:
A (2n+1) DIMENSIONAL LINEAR VECTOR FIELD authors
A TALESHIAN
Department of mathematics, Faculty of Seiences, University of Mazandaran, Bbabolsa, Iran