Solving Cold Start problem in Trust-Based Recommendation Systems Using Temporal Pagerank Algorithm
Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 491
متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AISST02_018
تاریخ نمایه سازی: 6 اردیبهشت 1396
Abstract:
Collaborative filtering is a extensively used method for recommendation systems. The main assumption is that users with comparable taste in the past are expected to give similar ratings on the items of interest in the future. However collaborative filtering naturally suffers from Cold Start phenomenon. This problem presented by cold-start users who rate zero or a few items. As a result, there has been developing research in recent years to provide effective recommendation for cold start user. In this paper, we propose a method to solve cold start new user problem that accommodate user model withtrust and distrust model with consideration of friendship time factor to find trusty users as reference users. The suggestions of these users then collected to provide appropriate recommendation. Experiments based on Epinions data-set demonstrate that our method outperforms other counterparts both in coverage and user coverage rate
Keywords:
Authors
Shayan Asadpoor
Department of Software Engineering, Salman Higher Education Institute, Mashhad, Iran
Mehrdad Jalali
Department of Software Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran