Bayesian extreme learning machines for predicting discharge coefficient of A-type piano key weir
Publish place: International Congress on Engineering Innovation
Publish Year: 1395
Type: Conference paper
Language: English
View: 551
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICEICONF01_258
Index date: 26 April 2017
Bayesian extreme learning machines for predicting discharge coefficient of A-type piano key weir abstract
In this study, three machine learning based techniques for prediction of discharge coefficient of an A-type Piano Key Weir (PK-Weir) located on the straight open channel flume were considered. These techniques are consisted of Least Square Support Vector Machine (LS-SVM), Extreme Learning Machine (ELM) and Bayesian ELM (BELM). For this purpose, 70 laboratory test results are used for determining discharge coefficient of PK-Weir for a wide range of discharge values. Root Mean Squared Error (RMSE), Nash–Sutcliffe model efficiency coefficient (NSE) and Threshold Statistics (TS) are used for comparing the performance of the models. The simulation results indicate that an improvement in predictive accuracy could be achieved by the ELM approach in comparison with LSSVM (RMSE of 0.016 and NSE of 0.986) while the BELM model’s generalization capacity enhanced, with RMSE of 0.011and NSE of 0.989 in testing dataset.
Bayesian extreme learning machines for predicting discharge coefficient of A-type piano key weir Keywords:
Bayesian extreme learning machines for predicting discharge coefficient of A-type piano key weir authors
Ehsan Olyaie
Department of Water Engineering, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
Hossein Banejad
Department of Water Engineering, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :