Bayesian extreme learning machines for predicting discharge coefficient of A-type piano key weir
Publish place: International Congress on Engineering Innovation
Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 499
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEICONF01_258
تاریخ نمایه سازی: 6 اردیبهشت 1396
Abstract:
In this study, three machine learning based techniques for prediction of discharge coefficient of an A-type Piano Key Weir (PK-Weir) located on the straight open channel flume were considered. These techniques are consisted of Least Square Support Vector Machine (LS-SVM), Extreme Learning Machine (ELM) and Bayesian ELM (BELM). For this purpose, 70 laboratory test results are used for determining discharge coefficient of PK-Weir for a wide range of discharge values. Root Mean Squared Error (RMSE), Nash–Sutcliffe model efficiency coefficient (NSE) and Threshold Statistics (TS) are used for comparing the performance of the models. The simulation results indicate that an improvement in predictive accuracy could be achieved by the ELM approach in comparison with LSSVM (RMSE of 0.016 and NSE of 0.986) while the BELM model’s generalization capacity enhanced, with RMSE of 0.011and NSE of 0.989 in testing dataset.
Keywords:
Authors
Ehsan Olyaie
Department of Water Engineering, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran
Hossein Banejad
Department of Water Engineering, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :