طراحی سیستم کشف نفوذ با استفاده از درخت تصمیم RandomTree
Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 490
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
COMCONF03_265
تاریخ نمایه سازی: 6 اردیبهشت 1396
Abstract:
با افزایش حملات اینترنتی به شبکه های سازمان ها و موسسات و تحمیل ضررهای مالی به آن ها، تامین امنیت شبکه اهمیتی دو چندان یافته است. امروزه در شبکه های کامپیوتری برای مقابله با حمله ها از سیستم های امنیتی مختلفی مانند سیستم های تشخیص نفوذ (IDS) استفاده می شود. این سیستم ها با رصد کردن فعالیت های شبکه، نقش مهمی در کاهش خسارت ناشی از این حملات دارند. در سیستم های تشخیص نفوذ از روش های مختلفی استفاده می شود که یکی از این روش ها داده کاوی است. این مقاله به ارایه یک روش ترکیبی یادگیری ماشین به منظور تشخیص نفوذ در شبکه می پردازد. روش ترکیبی ارایه شده در این مقاله مبتنی بر مفهوم کاهش ویژگی و الگوریتم درخت تصمیم RandomTree و دسته بند ترکیبی بوده است. کارایی یک سیستم تشخیص الگو شدیدا وابسته به روش انتخاب ویژگی است. ازآنجایی که با افزایش تعداد ویژگی ها هزینه محاسباتی یک سیستم نیز افزایش می یابد، طراحی و پیاده سازی سیستم ها با کمترین تعداد ویژگی های ممکن ضروری به نظر می رسد. در این مقاله سعی شده است تا با استفاده انتخاب ویژگی های موثر از مجموعه داده NSL-KDD با استفاده از معیارهای CFS، GR و IG میزان تشخیص حملات نفوذی بهبود داده شود.نتایج حاصل از این آزمایش، توانمندی الگوریتم درخت تصمیم RandomTree را در تشخیص نفوذ تایید می نماید. ه طوری که این مدل توانسته 99/90 درصد داده ها را با تشخیص صحیح، دسته بندی کند.
Keywords:
Authors
هدی رمضانی موزیرجی
دانشگاه آزاد اسلامی، بابل، ایران
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :