سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Design of an Approximate Dynamic Programming based neural controller for Smart Home Energy Management

Publish Year: 1395
Type: Conference paper
Language: English
View: 762

This Paper With 10 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ICTCK03_038

Index date: 1 July 2017

Design of an Approximate Dynamic Programming based neural controller for Smart Home Energy Management abstract

Demand Side Management (DSM) is the control of consumer demand for energy via different techniques such as financial incentives. This technology has become inevitable in the new smart grid infrastructure. In this study, a DSM scheme, a novel smart home energy management system, is proposed. The goal, defined in terms of cost, is to manage the home energy system according to time-varying prices in a way that energy demand from grid is reduced as much as possible or it is moved to off-peak times. The proposed scheme takes advantage of local energy generation, energy storage unit and schedulable load. Our offline scheme uses an Adaptive Dynamic Programming (ADP) based algorithm to solve the energy management problem and optimally schedule the battery and load operations in a given time horizon. We also use PSO method to solve the mentioned problem. The results obtained by PSO are used as an element of comparison. Simulation results show that the ADP algorithm can reduce costs with respect to PSO due to better decision making ability

Design of an Approximate Dynamic Programming based neural controller for Smart Home Energy Management Keywords:

Design of an Approximate Dynamic Programming based neural controller for Smart Home Energy Management authors

Shima Rashidi Dashtbayaz

Department of Electrical Engineering Mashhad Branch, Islamic Azad University Mashhad, Iran

Rajab Asgharian

Department of Electrical EngineeringMashhad Branch, Islamic Azad UniversityMashhad, Iran

Reihaneh Kardehi Moghaddam

Department of Electrical EngineeringMashhad Branch, Islamic Azad UniversityMashhad, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
X. Fang, S. Miara, G. Xue, D. Yang, "Smart Grid ...
X. Chen, T. Wei, S. Hu, _ _ ertainty-aware household ...
Schober, :Optimal and autonomous incentive-based energy consumption scheduling algorithm for ...
A. Anvari-Mo ghaddam, H. Monsef, A. Rahimi-Kian, "Optimal smart home ...
home task and energy resource scheduling based on nonlinear programming", ...
novel smart home A؛" [6] M. Cabras, V. Pilloni, L. ...
Arifuzzaman, S. Takuro, "Cost-efficiet residental energy management scheme for information ...
Huelin, E. Caamano -Marti, D. Masa, J. J imenez-Leube, _ ...
management with pv energy in the residentil sector", [20] R. ...
time electricity pricing environments", IEEE Trans [21] J. Si, Y. ...
optimization", IEEE International Conference _ Neural Networks (ICNN) 1995, vol. ...
C. Changsong, D. Shanxu, C. Tao, L. Bangyin, Y. [23] ...
IEEE 6th international power electronics and motion [24] S. Wilcox, ...
Appl Energy 2012; 91(1):90-7. ...
Smart Grid 2010; I(2):120-33. ...
power flow management for grid connected pv systems [22] J. ...
control conference 2009; p. 2136-9. ...
N. Gudi, L. Wang, V. Devabhaktuni, S. Depuru, :A platform ...
incorporating optimal management of distributed renewable resources", Power Systems Conference ...
Q. Wei, D. Liu, G. Shi, Y. Liu, "Multi-battery optimal ...
T. Huang, D. Liu, "Residential energy system control dynamic ...
programming", International Joint Conference On Neural Networks (IJCNN), IEEE 2011; ...
D. Fuselli, F. De Angelis, M. Boaro, S. Squartini, Q. ...
Murray JJ, Cox CJ, Lendaris GG, Saeks R, "Adaptive dynamic ...
Werbos PJ. In: White D, Sofge D, editors. Approximate dynamic ...
D. Prokhorov, DC Wunsch, "Adaptive critic designs", IEEE Trans Neural ...
نمایش کامل مراجع