پیش بینی تقاضای گردشگری داخلی شهر تهران با استفاده از مدل های ترکیبی خلاقانه

Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 674

This Paper With 15 Page And PDF and WORD Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

NCCEW01_001

تاریخ نمایه سازی: 18 تیر 1396

Abstract:

پیش بینی متغیرهای اقتصادی از اهمیت ویژه ای برای سیاستمداران و اقتصاددانان هر کشور به ویژه در حوزه گردشگری برخوردار است. در این مقاله، یک روش موثر مبتنی بر رویکرد شبکه عصبی مصنوعی برای پیش بینی سری زمانی تقاضای گردشگری داخلی شهر تهران ارایه شده است. سپس، این شبکه با استفاده از 10 الگوریتم آموزشی موجود در تولباکس نرم افزار متلب آموزش داده شده و نتایج بدست آمده است. به منظور افزایش کارایی شبکه، از یک الگوریتم فراابتکاری به برای آموزش شبکه استفاده شده است. به منظور مقایسه دقت پیش بینی و بررسی کارایی رویکرد پیشنهادی، ابتدا معیار اندازه گیری عملکرد معرفی و سپس، از داده های واقعی مربوط به میزان تقاضای گردشگری داخلی شهر تهران برای پیش بینی استفاده شده است. نتایج حاصل از اجرای مدل به ازای الگوریتم های آموزشی ذکرشده نشان از برتری الگوریتم SVR نسبت به سایر الگوریتم های آموزشی دارد.

Authors

ابتهال زندی

دانشجوی دکتری مدیریت گردشگری دانشگاه علامه طباطبایی و عضو هیات علمی گروه مدیریت جهانگردی و هتلداری، دانشکده علوم انسانی دانشگاه آزاد اسلامی واحد تهران غرب

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • اینسکیپ، ادوارد(1392)، برنامه ریزی گردشگری رویکردی یکپارچه _ پایدار به ...
  • حقیقت منفرد، جلال، احمدعلی نژاد، محمود، متقالچی، سارا. (1391) مقایسه ...
  • راسخی نژاد، آرزو(1388)، تخمین تابع تقاضای گردشگری داخلی در ایران، ...
  • سالارپور، ماشا. . .، نجاری، جعفر، سیدآقاحسینی، سیدمحسن، صبوحی، محمود. ... [مقاله ژورنالی]
  • مکیان، سیدنظام الدین، موسوی، فاطمه السادات. (1391)، پیش بینی قیمت ...
  • Che, Z. (2010). PSO-based b ack-prop agation artificial neural network ...
  • Chen, K. -Y. , & Wang, C. -H. (2007). Support ...
  • Chen, K. -Y. (2011). Combining linear and nonlinear model in ...
  • Funahashi, K. I. (1989). On the approximate realization of continuous ...
  • Hornik, K. , Stinchcombe, M. , & White, H. (1989). ...
  • Hu, M. J. C. (1964). Application of the adaline system ...
  • Khalili -Damghani, K. , & Sadi-Nezhad, S. (2011). Application of ...
  • Lapedes, A. , & Farber, R. (1988). How neural nets ...
  • Lasheras, F. S. , de Cos Juez, F. J. , ...
  • Law, R and Au, N. (1999). A Neural network model ...
  • Lippmann, R. P. (1987). An introduction to computing with neural ...
  • st National Conference Creative Economy ...
  • Pai, P. F. , Hong, W. C. , Chang, P. ...
  • Palmer, Alfonso; Jose, Montano Juan and Sese, Albert. (2006). Designing ...
  • Pearce, D. G. , (2001). Towards a Regional Analysis of ...
  • Peyghami, M. R. , & Khanduzi, R. (2012). Predictability and ...
  • Rumelhart, D. E. , Hinton, G. E. , & Williams, ...
  • Sharda, R. (1994). Neural networks for the MS/OR analyst: An ...
  • Shen, S. , Li, G. , & Song, H. (2011). ...
  • Sheng Lu, Zh& Zhang, X(2009), Tourism Demand Forcasting by Support ...
  • Siddique, N. , & Adeli, H. (2013). Computational intelligence: synergies ...
  • Valipour, M. , Banihabib, M. E. , & Behbahani, S. ...
  • Weng, G, & Li, L(2015), Study of Tourism Forcasting Based ...
  • Werbos, P. J. (1974). Beyond regression: New tools for prediction ...
  • Werbos, P. J. (1988). Generalization of backpropag ation with application ...
  • Zhang, G. , Patuwo, B. E. , & Hu, M. ...
  • Zhang, X. (1994). Time series analysis and prediction by neural ...
  • نمایش کامل مراجع