PRIMARY FAULT DETECTION OF TRANSFORMER USING NEURAL NETWORK
Publish place: The second national conference Math: Advanced Engineering Mathematics with techniques
Publish Year: 1396
Type: Conference paper
Language: English
View: 649
This Paper With 7 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
MAEMT02_018
Index date: 2 August 2017
PRIMARY FAULT DETECTION OF TRANSFORMER USING NEURAL NETWORK abstract
The most widely recognized determination technique for power transformer faults is the dissolved gas analysis (DGA) of transformer oil. Different strategies have been produced to define DGA results such as key gas method and roger’s ratio method. The present methodology uses IEC 60599 ratio method to distinguish fault in transformers, which is having the benefit of using three gas proportions rather than four gas proportions. In some cases, the DGA results cannot be coordinated by the current codes, making the diagnosis unsuccessful in multiple faults. To overcome this issue, we have proposed the utilization of neural networks to demonstrate their capability to recognize the primary faults in transformers.
PRIMARY FAULT DETECTION OF TRANSFORMER USING NEURAL NETWORK Keywords:
PRIMARY FAULT DETECTION OF TRANSFORMER USING NEURAL NETWORK authors
Alireza Hamedi
Department of Power and Control Engineering, Shiraz University
Ali Reza Seifi
Department of Power and Control Engineering, Shiraz University
Saeed Nejadfard Jahromi
Department of Power and Control Engineering, Shiraz University
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :