An approach for increasing educational performance using

Publish Year: 1395
نوع سند: مقاله کنفرانسی
زبان: English
View: 415

This Paper With 6 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

KBEI03_008

تاریخ نمایه سازی: 11 مرداد 1396

Abstract:

Today, the ability to monitor and storage of large amounts of data has been provided with the progress of science and technology tools. There is a necessary need to search the data and extract useful knowledge among the ever-increasing data. Data analysis is automatic searching of large data sources to find patterns and dependencies which cannot be understood with simple statistical analyzes.Education is an area that is required to apply these tools for extensive data analysis and predictive modeling using new computational methods. The purposes of this research is indicating the role and the scope of predictive data analysis and propose a framework for evaluating and predicting students academic status with the operation of data analysis models. In this paper we study 11670 questionnaires that are distributed among five university students in Qom region in order to discover and highlight the important factors influencing over educational performance. As a result we can claim that the student who has higher rate of participation in class will receive a higher score.

Authors

Atefe Rafighi

Department of Information technology Engineering University of Taali, Qom, Iran

Reza Ahsan

Department of Information technology Engineering Islamic Azad University, Qom Branch, Qom, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ying Zhang, Samia Oussena, Tony Clark, Hyeonsook Kim (2010). Use ...
  • Luan, J., (2002). Data mining and knowledge management in higher ...
  • Herzog, S., (2006). Estimating student retention and degree completion time: ...
  • Tinto, V., (2000). Taking student retention seriously: rethinking the first ...
  • in:Lect. Notes Artif. Intell. , vol. 3642, Springer -Verlag, 2005, ...
  • A. Wojna, Combination of metric-based and rule-based classification, in:D. 'Sle, ...
  • A. Skowron, H. Wang, A. Wojna, J. G. Bazan, Multimodal ...
  • Z. Pawlak, Decision trees and flow graphs, in: Proceeding sof ...
  • Trivellas, P., & Dargenidou, D. (2009). Organisati onal culture, job ...
  • Konstant opoulos N. _ Sakas D. P. , (2010). The ...
  • analysis, in: Proceeding sof KDD-O6, Philadelphia, Pennsy l vania, USA, ...
  • Z. Pawlak, Flow graphsand datamining, in: J. F. Peter, A. ...
  • Z. Pawlak, Inpursuit of pattern sin data reasoning from data ...
  • Y. Li, N. Zhong, Interpretations of association rules by granular ...
  • Y. Li, W. Yang, Y. Xu, Multi - tiergranule mining ...
  • Y. Li, J. Wu, Summarizati on of association rule sinmulti ...
  • B. Liu, Y. Li, Y. -C. Tian, Discovering novel knowled ...
  • B. Liu, Y. Li, K. Wang, Granule mining andits application ...
  • J. Yao, Aten - year review of granular computing, in: ...
  • W. Pedrycz, A. Skowron, V. Kreinovich, Handbook of Granular Computing, ...
  • Y. Yao, Partition model of granular computing, in: J. F. ...
  • Y. Yao, L. Zhao, A measurement theory view on the ...
  • J. G. Bazan, S. H. Nguyen, H. S. Nguyen, A. ...
  • A. Skowron, Rough set sand vague conceps, Fundam. Inform. 64(1-4)(2005)4 ...
  • P. Lingras, Y. Yao, Time complexity of rough clustering: gasversusk ...
  • E. Tsang, Z. Suyun, Decision table reduction in KDD: fuzzy ...
  • J. Guan, D. Bell, D. Liu, Therough set approach to ...
  • Y. Leung, M. M. Fischer, _ Wu, J. Mi, Arough ...
  • J. Yao, Y. Yao, Induction of classification rules by granular ...
  • نمایش کامل مراجع