A graph clustering based method for Energy efficient clustering in wireless sensor networks
Publish place: دومین کنفرانس ملی رویکردهای نو در مهندسی برق و کامپیوتر
Publish Year: 1395
Type: Conference paper
Language: English
View: 589
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
NAECE02_047
Index date: 2 August 2017
A graph clustering based method for Energy efficient clustering in wireless sensor networks abstract
Wireless sensor networks have recently gained the attention of researchers in many challenging aspects. The most important challenge in these networks is energy conservation. Enhancing the lifetime of wireless sensors network and efficient utilizations of bandwidth are essential for the proliferation of wireless sensor network in different applications. In this paper, a graph clustering based method is proposed to optimize the lifetime of wireless sensor networks. The proposed method is a cluster based approach like LEACH. Graph clustering is used to maximize the lifetime of the network by means of rounds. The clustering algorithm is presented by considering energyconservation of the nodes through load balancing. The proposed algorithms are experimented extensively and the results are compared with the existing algorithms to demonstrate their superiority in terms of network life, energy consumption, dead sensor nodes and delivery of total data packets to the base station. The results show that the proposed method is found to be more efficient than previous works.
A graph clustering based method for Energy efficient clustering in wireless sensor networks Keywords:
A graph clustering based method for Energy efficient clustering in wireless sensor networks authors
Zusha beiranvand
Department of Computer Ashtian Branch, Islamic Azad University Buinzahra, Iran
Mehrdad Rostami
Department of Computer University of kurdistan Sanadaj, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :