سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Numerical Studying of PDEs on Manifold with Gaussian Data

Publish Year: 1394
Type: Conference paper
Language: English
View: 392

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

Export:

Link to this Paper:

Document National Code:

CSCG01_154

Index date: 21 October 2017

Numerical Studying of PDEs on Manifold with Gaussian Data abstract

The present paper considers PDEs on curves with Gaussian data. We state formulation of elliptic PDE on curves applying recently developed implicit closest point method and drive the cut finite element solution. The Gaussian data is included to the PDE and we drive the required statistics analytically and numerically. Uncertaintyquantification is performed with Monte Carlo sampling method and stochastic Collocation method. Karhunen-Loeve expansion is applied for approximation of random data. The method is numerically implemented to some examples and results illustrating the efficiency of the method.

Numerical Studying of PDEs on Manifold with Gaussian Data Keywords:

Numerical Studying of PDEs on Manifold with Gaussian Data authors

Mostafa Eslami

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

Hadi Estebsari

Department of Mathematics, Iran University Science, and Technology, Tehran, Iran