سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

ریزمقیاس نمایی آماری مبتنی بر ANN مدل GCM برای پیش بینی پارامترهای هیدروکلیماتولوژی (مطالعه موردی : شهر تبریز)

Publish Year: 1396
Type: Conference paper
Language: Persian
View: 766

This Paper With 8 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

IHC16_453

Index date: 11 May 2018

ریزمقیاس نمایی آماری مبتنی بر ANN مدل GCM برای پیش بینی پارامترهای هیدروکلیماتولوژی (مطالعه موردی : شهر تبریز) abstract

برای بررسی تاثیر تغییر اقلیم بر سیستم های مختلف مانند منابع آب در دوره های آتی، در ابتدا متغیرهای اقلیمی تحت تاثیر تغییرات گازهای گلخانه ای شبیه سازی می شوند. روش های مختلفی برای شبیه سازی متغیرهای اقلیمی، تحت تاثیر تغییر اقلیم وجود دارد که معتبرترین آن ها، استفاده از داده های مدل گردش عمومی جو (GCM) می باشد. مهم ترین ضعف مدل های GCM، بزرگ بودن مقیاس مکانی متغیرهای اقلیمی شبیه سازی شده توسط این مدل ها نسبت به مقیاس منطقه ای می باشد. بنابراین برای استفاده از این داده ها لازم است تا داده های GCM توسط تکنیک های مختلف، ریز مقیاس گردند. در این مطالعه از شبکه عصبی مصنوعی (ANN) برای ریز مقیاس نمودن خروجی های مدل GCM که توسط سناریو های مختلف شبیه سازی می شوند استفاده شده است. از آنجا که تعداد پارامترهای ورودی به مدل ANN زیاد می باشد بدون شک اصلی ترین مرحله به هنگام استفاده از این مدل ها، انتخاب مناسب ترین داده ها به عنوان ورودی است، چرا که با افزایش تعداد متغیرهای ورودی، پیچیدگی محاسبات داخل مدل افزایش می یابد، روند آموزش مدل سخت تر وکندتر می شود. بنابراین در این مطالعه برای انتخاب پارامترهای ورودی موثر از روش ضریب همبستگی (CC) استفاده شده است. نتایج نشان داد که پارامترهای بارش و دما در دوره آتی به ترتیب کاهش و افزایش می یابند. بیشترین کاهش بارندگی تحت سناریو RCP8.5 (10.67%-) و بیشترین افزایش دما تحت سناریو RCP4.5(%2.5) پیش بینی شدند.

ریزمقیاس نمایی آماری مبتنی بر ANN مدل GCM برای پیش بینی پارامترهای هیدروکلیماتولوژی (مطالعه موردی : شهر تبریز) Keywords:

ریزمقیاس نمایی آماری مبتنی بر ANN مدل GCM برای پیش بینی پارامترهای هیدروکلیماتولوژی (مطالعه موردی : شهر تبریز) authors

زهرا رزاق زاده

دانشجوی کارشناسی ارشد مهندسی عمران – آب، دانشگاه تبریز

وحید نورانی

استاد دانشکده مهندسی عمران، دانشگاه تبریز

مقاله فارسی "ریزمقیاس نمایی آماری مبتنی بر ANN مدل GCM برای پیش بینی پارامترهای هیدروکلیماتولوژی (مطالعه موردی : شهر تبریز)" توسط زهرا رزاق زاده، دانشجوی کارشناسی ارشد مهندسی عمران – آب، دانشگاه تبریز؛ وحید نورانی، استاد دانشکده مهندسی عمران، دانشگاه تبریز نوشته شده و در سال 1396 پس از تایید کمیته علمی شانزدهمین کنفرانس هیدرولیک ایران پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله مدل گردش عمومی جو، شبکه عصبی مصنوعی، تغییر اقلیم، ضریب همبستگی هستند. این مقاله در تاریخ 21 اردیبهشت 1397 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 766 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که برای بررسی تاثیر تغییر اقلیم بر سیستم های مختلف مانند منابع آب در دوره های آتی، در ابتدا متغیرهای اقلیمی تحت تاثیر تغییرات گازهای گلخانه ای شبیه سازی می شوند. روش های مختلفی برای شبیه سازی متغیرهای اقلیمی، تحت تاثیر تغییر اقلیم وجود دارد که معتبرترین آن ها، استفاده از داده های مدل گردش عمومی جو (GCM) می باشد. مهم ... . این مقاله در دسته بندی موضوعی شبکه عصبی و تغییر اقلیم طبقه بندی شده است. برای دانلود فایل کامل مقاله ریزمقیاس نمایی آماری مبتنی بر ANN مدل GCM برای پیش بینی پارامترهای هیدروکلیماتولوژی (مطالعه موردی : شهر تبریز) با 8 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.