ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
Publisher of Iranian Journals and Conference Proceedings
Paper
Title

قیاس رویکردی الگورتیمهای یادگیری ماشین برای شبکه عصبی مصنوعی، شبکه عصبی MLP،شبکه عصبیRBF

Year: 1396
COI: ETECH03_119
Language: PersianView: 261
This Paper With 8 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 8 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

عبدالحسین فتحی - هییت علمی، دانشگاه رازی، دانشکده کامپیوتر و فناوری اطلاعات، کرمانشاه، ایران
شیما شفیعی - دانشجو دکترا معماری سیستم های کامپیوتری، دانشگاه رازی، دانشکده کامپیوتر وفناوری اطلاعات، کرمانشاه، ایران

Abstract:

مسیله یادگیری ماشین این است که کامپیوتر بتواند به تدریج و با افزایش داده ها، کارایی بهتری در انجام وظیفه ی مورد نظر پیدا نموده و پژوهشگران بر آناند که روشهای یادگیری نوینی به وجود بیاورند و امکان پذیری و کیفیت یادگیری را برای تکنیکهای پیشنهادی مطالعه کنند و در سوی دیگر عدهای از پژوهشگران سعی میکنند روشهای یادگیری ماشینی را بر مسایل تازه ای اعمال کنند پس هدف یادگیری ماشین عبارت است از: چگونه میتوان برنامه ای نوشت که از طریق تجربه، یادگیری کند و عملکرد خود را بهتر نماید و یکی از بارزترین الگوریتم های یادگیری ماشین همان شبکه های عصبی مصنوعی هستند که با توجه به حجم بالای اطلاعات در بانکهای داده و یافتن اطلاعات مفید و مناسب در آنها ضرورت پیدا کرده. از سویی دیگر یادگیری شبکه عصبی مصنوعی، یکی از پرکاربردترین و کارآمدترین متدهای یادگیری استقرایی برای پردازش ها میباشند . هدف این مقاله، ارایه کارا بودن روش یادگیری شبکه عصبی RBF به عنوان روشی مناسب و قوی برای داده هایی با حجم بالا، نسبت به شبکه عصبی و شبکه عصبی چند لایه میباشد. در روش تحقیق، ارزیابی از عملگردهای الگوریتم های یادگیری ماشین یعنی انواع شبکه عصبی انجام گردیده و سرانجام در بخش یافته ها و نتایج تجربی الگوریتم یادگیری شبکه عصبی RBF نسبت به رقیبهای خود یعنی شبکه عصبی چند لایه و شبکه عصبی مصنوعی توانست به نتایج بهتری دست یابد.

Keywords:

الگورتیم های یادگیری ماشین، شبکه عصبی مصنوعی، شبکه عصبی MLP ، شبکه عصبی .RBF

Paper COI Code

برای لینک دهی به این Paper می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت Paper در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/749283/

How To Citation:

در صورتی که می خواهید در اثر پژوهشی خود به این Paper ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
فتحی، عبدالحسین و شفیعی، شیما،1396،قیاس رویکردی الگورتیمهای یادگیری ماشین برای شبکه عصبی مصنوعی، شبکه عصبی MLP،شبکه عصبیRBF،سومین کنفرانس ملی تکنولوژی مهندسی برق و کامپیوتر،تهران،،،https://civilica.com/doc/749283

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این Paper اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1396، فتحی، عبدالحسین؛ شیما شفیعی)
برای بار دوم به بعد: (1396، فتحی؛ شفیعی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی Paper

مشخصات مرکز تولید کننده این Paper به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 8,432
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات پیشنهادی مرتبط

New Papers

Share this page

More information about COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

Support