مقایسه الگوریتم های ResNet50 و VGG16 از لحاظ سرعت و پیچیدگی پیاده سازی روی پردازنده های مختلف
Publish Year: 1396
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 1,326
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCNIEE06_145
تاریخ نمایه سازی: 1 مرداد 1397
Abstract:
امروزه هوش مصنوعی جهت افزایش دقت و آسایش رشد بسیاری کرده است. در این راستا الگوریتمها و شبکه های مختلفی مطرح و شروع به کار کردهاند. یکی از معروفترین شبکه های توسعه یافته در حوزه یادگیری عمیق، شبکه های عصبی کانولوشن میباشند. هدف از استفاده از شبکه های عصبی کانولوشن پیشبینی و دسته بندی دیتابیسهای مختلف بدون دخالت حواس انسان میباشد. دو الگوریتم ResNet50 و VGG16 از الگوریتمهای معروف شبکه های عصبی کانولوشن میباشند. در این مقاله به مقایسه ساختار دو الگوریتم و سرعت اجرای آنها درپردازنده های مختلف پرداخته شده است.
Authors
فایزه شادمان فر
دانشجوی کارشناسی ارشد الکترونیک مدار مجتمع، دانشگاه آزاد اسلامی واحد خوراسگان
عاطفه سلیمی
عضو هیات علمی گروه برق، دانشگاه آزاد اسلامی واحد خوراسگان