پیش بینی بارش ایستگاه باران سنجی نهاوند با استفاده از روش هیبریدی موجک –ساریما-شبکه عصبی مصنوعی
Publish place: 17th Iranian Hydraulics Conference
Publish Year: 1397
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 659
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IHC17_014
تاریخ نمایه سازی: 1 دی 1397
Abstract:
در این مطالعه با توجه به ویژگی های غیرخطی و مقیاس های زمانی چندگانه بارشهای ماهانه ، یک روش هیبریدی مبتنی بر مدل های موجک، ساریما و شبکه عصبی مصنوعی به منظور پیش بینی آن پیشنهاد گردیده است. بدین منظور سری زمانی بارش ماهانه ایستگاه باران سنجی نهاوند در استان همدان با طول دوره آماری چهل سال با استفاده از تبدیل موجک گسسته به یک زیر سری تقربی با فرکانس بالا و چند زیر سری جزیی با فرکانس پایین تجزیه شد و سپس زیر سری تقریبی توسط مدل ساریما و زیر سری های جزیی با استفاده از شبکه عصبی مصنوعی پیش بینی شدند و در نهایت زیر سریهای پیش بینی شده با استفاده از تبدیل موج معکوس جهت پیش بینی بارش ماه آینده با هم جمع شدند. به منظور مقایسه کارایی مدل موجک- ساریما- شبکه عصبی مصنوعی با دیگر مدل ها، مدل مذکور با مدل های موجک- شبکه عصبی مصنوعی و ساریما مقایسه گردید. در آخر نتایج حاکی از دقت بالای مدل پیشنهادی در پیش بینی بارش ماهانه نسبت به دیگر مدلها بود.
Keywords:
Authors
مریم شفایی
دکترای مهندسی منابع آب، گروه مهندسی آب، دانشگاه تبریز.
آرش نجاتی
دکترای سازه های آبی، گروه مهندسی آب، دانشگاه بوعلی سینا
احمد فاخری فرد
استاد گروه مهندسی آب، دانشگاه تبریز