سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Diagnosis of Breast Cancer Using the Gradient Boosted Trees Data Mining Technique

Publish Year: 1397
Type: Conference paper
Language: English
View: 595
این Paper فقط به صورت چکیده توسط دبیرخانه ارسال شده است و فایل کامل قابل دریافت نیست. برای یافتن Papers دارای فایل کامل، از بخش [جستجوی مقالات فارسی] اقدام فرمایید.

نسخه کامل این Paper ارائه نشده است و در دسترس نمی باشد

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

SISOC01_048

Index date: 23 April 2019

Diagnosis of Breast Cancer Using the Gradient Boosted Trees Data Mining Technique abstract

Breast cancer is one of the deadliest and most common cancers among women in the world today. Data mining is one of the strongest and best practices in the field of diagnosis of breast cancer that has come to the aid of doctors in this area. This research was performed by working on randomized indigenous data in Shiraz, Iran, and modeling using three svm, regression linear, gradient boosted tree algorithms and also using ten fold cross validation method to verify the accuracy of the model. The results showed that gradient algorithm boosted trees with a precision of 99/74 showed a flipping performance over the rest of the algorithms.

Diagnosis of Breast Cancer Using the Gradient Boosted Trees Data Mining Technique Keywords:

Breast cancer , Data mining , Ten fold cross validation , Gradient boosted Trees

Diagnosis of Breast Cancer Using the Gradient Boosted Trees Data Mining Technique authors

Raziyeh Sarhadi

Iran, Shiraz, Teachers Square - North Iman - Sepah Bank - Apadana Institute of Higher Education

Reza Akbari

Iran, Shiraz, Blvd Masters, Industrial School

Sedigheh Tahmasebi

Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Vahid Zangouri

Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran