سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Subjective Video Quality Prediction from Objective Video Quality to Enrich Datasets

Publish Year: 1397
Type: Conference paper
Language: English
View: 411
این Paper فقط به صورت چکیده توسط دبیرخانه ارسال شده است و فایل کامل قابل دریافت نیست. برای یافتن Papers دارای فایل کامل، از بخش [جستجوی مقالات فارسی] اقدام فرمایید.

نسخه کامل این Paper ارائه نشده است و در دسترس نمی باشد

Export:

Link to this Paper:

Document National Code:

SPIS04_029

Index date: 6 May 2019

Subjective Video Quality Prediction from Objective Video Quality to Enrich Datasets abstract

method is proposed for the generation of set of video sequence with predictive subjective video quality (Mean Opinion Score) based on limited numberof sequences and the associated objective video quality measure (Peak Signal-to-Noise Ratio). The MOS is predicted using sigmoid function model that is optimized based on limited number of subjective tests for each video sequence. The correlation of the P-MOS to MOS achieved using this method is 0.94. The method can be used to enrich an existing video sequence dataset for the training phase in machine learning or deep leaning applications without bearing the burden and cost of the human opinion based regular subjective video quality test.

Subjective Video Quality Prediction from Objective Video Quality to Enrich Datasets authors