Detecting Shape Changes via Non-Isotropic Random Fields
Publish place: 05th Iranian Statistics Conference
Publish Year: 1379
Type: Conference paper
Language: English
View: 1,362
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ISC05_026
Index date: 4 January 2010
Detecting Shape Changes via Non-Isotropic Random Fields abstract
Three types of data are now available to test for changes in brain shape: 3D binary data for the indicator function or mask of the structure; 2D displacement data from the surface of the 3D structure; and trivariate 3D vector displacement data from the non-linear deformations required to align the structure with an atlas standard. We use the Euler characteristic of the excursion set of a random field as a tool to test for localized structural changes using local maxima and size of clusters in the excursion set. The data is highly non-isotropic, that is, the effective smoothness is not constant across the image, so the usual random field theory does not apply. We propose a solution that warps the data to isotropy using local multidimensional scaling. We then show that the subsequent corrections to the random field theory can be done without actually doing the warping – it is only sufficient to know that such a warp exists – a fact that is guaranteed in part by Nash’s Embedding Theorem. We shall apply thee methods to a set of 151 brain images from the Human Brain Mapping data base.
Detecting Shape Changes via Non-Isotropic Random Fields authors
K. J. Worsley
Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada H۳A ۲K۶.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :