سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

THE ZERO-DIVISOR GRAPH OF A MODULE

Publish Year: 1396
Type: Journal paper
Language: English
View: 395

This Paper With 17 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JAS-4-2_006

Index date: 9 July 2019

THE ZERO-DIVISOR GRAPH OF A MODULE abstract

Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, sayΓ(RM), such that when M=R, Γ(RM) coincide with the zero-divisor graph of R. Many well-known results by D.F. Anderson and P.S. Livingston have been generalized for Γ(RM). We Will show that Γ(RM) is connected withdiam Γ(RM)≤ 3 and if Γ(RM) contains a cycle, then Γ(RM)≤4. We will also show that Γ(RM)=Ø if and only if M is aprime module. Among other results, it is shown that for a reduced module M satisfying DCC on cyclic submodules,gr (Γ(RM))=∞ if and only if Γ(RM) is a star graph. Finally, we study the zero-divisor graph of freeR-modules. 

THE ZERO-DIVISOR GRAPH OF A MODULE Keywords:

THE ZERO-DIVISOR GRAPH OF A MODULE authors

A. Naghipour

Department of Mathematics, Shahrekord University, P.O. Box ۱۱۵, Shahrekord, Iran.