سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Modeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique

Publish Year: 1398
Type: Journal paper
Language: English
View: 420

This Paper With 10 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJMF-6-1_007

Index date: 9 July 2019

Modeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique abstract

Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental investigation of FCG behavior under various loading and environmental conditions is time-consuming and expensive, applying a reliable methodology for prediction of this property is essential. In this regard, a modeling technique based on least square support vector machine (LSSVM) framework is employed for prediction of FCG behavior of three different alloys including, Ti-6Al-4V alloy and two Cu-strengthened high strength low alloy (HSLA) steels in the air and corrosive media. The parameters of the developed model were calculated employing the coupled simulated annealing optimization technique. The performance and accuracy of the developed models were tested and validated by their ability to predict the experimental data. Statistical error analyses indicated that the developed model can satisfactorily represent the experimental data with high accuracy.

Modeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique Keywords:

Modeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique authors

N. Anjabin

Department of Materials Science and Engineering, School of Engineering , Shiraz University, Shiraz, Iran

F. Arabloo

Department of Materials Science and Engineering, School of Engineering , Shiraz University, Shiraz, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
R. Ghosh, Remaining life assessment of engineering components, Recent Trends ...
E. Santecchia, A. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, ...
W. Zhang, H. Liu, Q. Wang, J.J.M. He, A fatigue ...
R. Brighenti, A. Carpinteri, N. J. Corbari, Damage mechanics and ...
J. Mazars, G. Pijaudier-Cabot, From damage to fracture mechanics and ...
V. Shenoy, I.A. Ashcroft, G.W. Critchlow, A.D. Crocombe, Fracture mechanics ...
G. C. Sih, E.T. Moyer Jr, Path dependent nature of ...
Z. Božić, S. Schmauder, M. Mlikota, Fatigue growth models for ...
A. F. Siqueira, C.A.R.P. Baptista, O.L.C. Guimarães, C.O.F.T. Ruckert, Describing ...
E. Richey III, A.W. Wilson, J.M. Pope, R.P. Gangloff, Computer ...
T. T. Shih, R.P. Wei, A study of crack closure ...
C. Proppe and G. Schuëller, Stochastic analysis of fatigue crack ...
R. M.V. Pidaparti and M.J. Palakal, Neural network approach to ...
J. Mohanty, B. Verma, D. Parhi, P. Ray, Application of ...
W. Zhang, Z. Bao, S. Jiang, J. He, An Artificial ...
H. Wang, W. Zhang, F. Sun, W.J.M. Zhang, A Comparison ...
W. C. Hong, F.M. Lai, J.H. Wu, P.F. Pai, S.L. ...
W. Song, Z. Jiang, H. Jiang, Predict the fatigue life ...
J. Mohanty, T. Mahanta, A. Mohanty, D. N. Thatoi, Prediction ...
Y. Cheng, W. Huang, C.J. Zhou, Artificial neural network technology ...
M. E. Haque, K. J. Sudhakar, Prediction of corrosion–fatigue behavior ...
J. A. K. Suykens, J. Vandewalle, Least Squares Support Vector ...
C. Cortes, V. Vapnik, Support-vector networks, Mach Learn 20 (3) ...
V. Vapnik, The Nature of Statistical Learning Theory, Springer (2000). ...
A. Baylar, D. Hanbay, M. Batan, Application of least square ...
S. Rafiee-Taghanaki, M. Arabloo, A. Chamkalani, M. Amani, M.H. Zargari, ...
E. D. Übeyli˙, Least squares support vector machine employing model-based ...
S. R. Amendolia, G. Cossu, M. L. Ganadu, B. Golosio, ...
T. S. Chen, J. Chen, Y.C. Lin, Y.C. Tsai, Y.H. ...
Y. F. Zhang, J.Y.H. Fuh, A Neural Network Approach for ...
S. Deng, T.H. Yeh, Applying least squares support vector machines ...
J. Bode, Decision support with neural networks in the management ...
B. Verlinden, J.R. Duflou, P. Collin, D. Cattrysse, Cost estimation ...
K. S. Shin, T.S. Lee, H.J. Kim, An application of ...
J. A. K. Suykens, T. Van Gestel, J. De Brabanter, ...
M. M. Ghiasi, A. Shahdi, P. Barati, M. Arabloo, Robust ...
N. M. Mahmoodi, M. Arabloo, J. Abdi, Laccase immobilized manganese ...
H. Wang, D. Hu, Comparison of SVM and LS-SVM for ...
S. Sivaprasad, S. Tarafder, V. Ranganath, M. Tarafder, K.J. Ray, ...
M. Arabloo, A. Shokrollahi, F. Gharagheizi, A.H. Mohammadi, Toward a ...
A. Farasat, A. Shokrollahi, M. Arabloo, F. Gharagheizi, A. H. ...
A. Eslamimanesh, F. Gharagheizi, A.H. Mohammadi, D. Richon, Phase Equilibrium ...
S. Xavier-de-Souza, J.A. Suykens, J. Vandewalle, D. Bollé, Coupled simulated ...
H. Masuda, S. Matsuoka, The mechanism of corrosion fatigue crack ...
M. Fonte, S. Stanzl-Tschegg, B. Holper, E. Tschegg, A.K. Vasudevan, ...
نمایش کامل مراجع