سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Hybrid Adaptive Educational Hypermedia ‎Recommender Accommodating User’s Learning ‎Style and Web Page Features‎

Publish Year: 1398
Type: Journal paper
Language: English
View: 358

This Paper With 14 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-7-2_002

Index date: 10 July 2019

Hybrid Adaptive Educational Hypermedia ‎Recommender Accommodating User’s Learning ‎Style and Web Page Features‎ abstract

Personalized recommenders have proved to be of use as a solution to reduce the information overload ‎problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers ‎suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. ‎Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused on similarity ‎between the interest profile of a user and those of others. However, it can lead to the gray-sheep problem, ‎in which users with consistently different opinions from the group do not benefit from this approach. On ‎this basis, matching the learner’s learning style with the web page features and mining specific attributes ‎is more desirable. The primary contribution of this research is to introduce a feature-based recommender ‎system that delivers educational web pages according to the user s individual learning style. We propose an ‎Educational Resource recommender system which interacts with the users based on their learning style ‎and cognitive traits. The learning style determination is based on Felder-Silverman theory. Furthermore, ‎we incorporate all explicit/implicit data features of a page and the elements contained in them that have an ‎influence on the quality of recommendation and help the system make more effective recommendations.‎

Hybrid Adaptive Educational Hypermedia ‎Recommender Accommodating User’s Learning ‎Style and Web Page Features‎ Keywords:

Hybrid Adaptive Educational Hypermedia ‎Recommender Accommodating User’s Learning ‎Style and Web Page Features‎ authors

M. Tahmasebi

Department of Computer Engineering, Yazd University and University of Qom, Alghadir Blvd., Qom, Iran.

F. Fotouhi

Department of Computer Engineering and IT, University of Qom, Alghadir Blvd., Qom, Iran

M. Esmaeili

Department of Computer Engineering, Azad University of Kashan, Kashan, Iran. ‎