سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

An indirect adaptive neuro-fuzzy speed control of induction motors

Publish Year: 1395
Type: Journal paper
Language: English
View: 374

This Paper With 9 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-4-2_013

Index date: 10 July 2019

An indirect adaptive neuro-fuzzy speed control of induction motors abstract

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of induction motors. The online training of the neuro-fuzzy systems is based on the Lyapunov stability analysis and the reconstruction errors of the neuro-fuzzy systems are compensated in order to guarantee the asymptotic convergence of the speed tracking error. Moreover, to improve the control system performance and reduce the chattering, a PI structure is used to produce the input of the neuro-fuzzy systems. Finally, simulation results verify high performance characteristics and robustness of the proposed control system against plant parameter variation, external load and input voltage disturbance.

An indirect adaptive neuro-fuzzy speed control of induction motors Keywords:

An indirect adaptive neuro-fuzzy speed control of induction motors authors

M. Vahedi

Faculty of Electrical & Robotic Engineering, Shahrood University of Technology, Shahrood, Iran.

M. Hadad Zarif

Faculty of Electrical & Robotic Engineering, Shahrood University of Technology, Shahrood, Iran.

A. Akbarzadeh Kalat

Faculty of Electrical & Robotic Engineering, Shahrood University of Technology, Shahrood, Iran.