سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Nanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study

Publish Year: 1397
Type: Journal paper
Language: English
View: 430

This Paper With 7 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_ACERPT-4-1_007

Index date: 15 October 2019

Nanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study abstract

With the aim of promoting the Ni/Ce0.8Gd0.2O2-δ (Ni/GDC20) cermet anodic performance of low temperature solid oxide fuel cell (LT-SOFC) [1], nanostructuring platinum nanoparticles on NiO/GDC composite was done by single-step wet-infiltration of hexachloroplatinic acid hexahydrate (H2PtCl6.6H2O) precursor on NiO/GDC20 composite. The anodic polarization resistance was measured using symmetric Ni–GDC20|GDC20|Pt electrolyte-supported cell at a temperature range of 400 to 600 °C. Microstructural refinement was studied by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) techniques in comparison to the bare anode before and after hydrogen reduction at 600 °C and also after anodic performance test. Nanostructuring Pt-nanoparticles with an average particle size of 12.5 nm on Ni/GDC20 anode indicated the lack of electrocatalytic enhancement with the addition of platinum for H2 oxidation reaction in LT-SOFC.

Nanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study Keywords:

Nanostructuring Platinum Nanoparticles on Ni/Ce0.8Gd0.2O2-δ Anode for Low Temperature Solid Oxide Fuel Cell via Single-step Infiltration: A Case Study authors

Fatemeh Sadat Torknik

Materials and Energy Research Center (MERC), Karaj, Alborz, Iran

Gyeong Man Choi

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)

Amir Maghsoudipour

Department of Ceramic, Materials and Energy Research Center (MERC)

Mansoor Kianpour Rad

Department of Energy; Materials and energy Research Center (MERC)