سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection

Publish Year: 1398
Type: Journal paper
Language: English
View: 445

This Paper With 10 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-7-4_011

Index date: 9 December 2019

A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection abstract

Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that is considered as feature cost in this paper. Here, two novel features are proposed. They use semantic similarity measure to determine the relationship between the content and the URL of a page. Since suggested features don t apply third-party services such as search engines result, the features extraction time decreases dramatically. Login form pre-filer is utilized to reduce unnecessary calculations and false positive rate. In this paper, a cost-based feature selection is presented as the most effective feature. The selected features are employed in the suggested PWDS. Extreme learning machine algorithm is used to classify webpages. The experimental results demonstrate that suggested PWDS achieves high accuracy of 97.6% and short average detection time of 120.07 milliseconds.

A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection Keywords:

Cost-based feature selection , Extreme learning machine , Phishing , Semantic similarity , Term Frequency and Inverse Document Frequency (TF-IDF)

A Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection authors

A. Zangooei

Computer Engineering Department, Faculty of Engineering, Yazd University, Yazd, Iran.

V. Derhami

Computer Engineering Department, Faculty of Engineering, Yazd University, Yazd, Iran.

F. Jamshidi

Department of Electrical Engineering, Faculty of Engineering, Fasa University, Fasa, Iran.