سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A new structural design of an optical AWG multiplexer/demultiplexer

Publish Year: 1390
Type: Conference paper
Language: English
View: 2,473

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

Export:

Link to this Paper:

Document National Code:

NCOLE02_172

Index date: 15 March 2011

A new structural design of an optical AWG multiplexer/demultiplexer abstract

In this paper Array Waveguide Grating (AWG) was optimized for its applications in Wavelength Division Multiplexing (WDM) networks, wavelength selective switch as multiplexer/demultiplexer. With the new method of optimization proposed here, higher bandwidth and better crosstalk and insertion loss can be achieved .The procedure of optimization for finding the best parameters such as the waveguide separation at output circle, a new structure for tapered waveguide and displacement of foci from the foci of the standard Rowland circle construction are presented and the results are discussed. As we know the bandwidth is an important parameter in optical communication. In this paper we design a new structure for the conjunction of array waveguide and free propagation region. We have used commercial software BeamPROP to design a silica-based 8 channel AWGs with the channel spacing of 1.6 nm and the central wavelength 1550 nm. The occupied area of the phased arrayed waveguide is 2.2×1.3cm2, and the total device size is 3.6×1.6cm2. The 3-dB bandwidth of AWG is 4.3×10-4 μm, which is about 6.25×10-4 μm for the design without the tapered waveguide at the conjunction. The insertion loss of the side channels (1 and 8) is about 3.66 dB for this design.

A new structural design of an optical AWG multiplexer/demultiplexer Keywords:

A new structural design of an optical AWG multiplexer/demultiplexer authors

Ali Salehi Vanani

MSc Student of Electronic Engineering, Department of Communication and Electronic Engineering, Shiraz

Rahim Ghayour

Professor of Electronic Engineering, Department of Communication and Electronic Engineering, Shiraz University

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
A. Himeno, K. Kato, and T. Miya, "Silica-based planar ...
lightwave circuits, " IEEE J. Sel. Topics Quantum Electron., Vol. ...
in silica planar Advances"ه [2] C. R. Doerr and . ...
W.H. Wong and E.Y.B. Pun, "Design and fabrication ofa polymeric ...
M. K. Smit, "Now focussing and dispersive planar Electronics Letters, ...
H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed- ...
C. Dragone, C. H. Henry, I. P. Kaminow, and R. ...
K. Okamoto, H. Takahashi, S. Suzuki, A. Sugita, and Y. ...
Meint K. Smit, Cor van Dam, _ ased WDM- Devices: ...
M.K. Smit, "Integrated Optics in silicon-based aluminum oxide"", Ph.DD. Thesis, ...
_ Proceedings, Nov. 2000). ...
F.G. Sun, G.Z. Xiao, Z.Y. Zhang, Z.G. Lu, "Modeling of ...
نمایش کامل مراجع