سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Optimization of ANFIS model using wavelet transform for simulating groundwater level variations

Publish Year: 1399
Type: Journal paper
Language: English
View: 293

This Paper With 7 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_ARWW-7-1_003

Index date: 7 January 2021

Optimization of ANFIS model using wavelet transform for simulating groundwater level variations abstract

In this study, for the first time, groundwater level (GWL) variations of the Sarab-e Qanbar well located in the city of Kermanshah, are simulated over a 13-year period by a hybrid model named WANFIS (wavelet-adaptive neuro fuzzy inference system). In order to develop the hybrid model, the wavelet transform and the adaptive neuro fuzzy inference system (ANFIS) model are utilized. Furthermore, the 9 and 4 year data are used for training and testing the artificial intelligence models, respectively. Moreover, the effective lags are detected by the autocorrelation function (ACF) and then eight different models are developed for each of the ANFIS and WANFIS models using them. After that, all mother wavelets are evaluated and Dmey mother wavelet is chosen as the most optimal. For this mother wavelet, the values of scatter index (SI), variance account for (VAF) and Root mean square error (RMSE) are obtained 0.192, 94.951 and 3.117, respectively. Next, the superior model is detected through the analysis of the results obtained by all ANFIS and WANFIS models. The superior model estimates the objective function values with reasonable accuracy. For example, the correlation coefficient (R), Scatter Index (SI) and variance account for (VAF) for this model are obtained 0.974, 0.192 and 94.951, respectively. The modeling results indicate that the wavelet transform noticeably enhances the ANFIS model accuracy. Finally, the lags of the time series data for the Sarab-e Qanbar well including (t-1), (t-2), (t-3) and (t-4) are introduced as the most effective lags.

Optimization of ANFIS model using wavelet transform for simulating groundwater level variations Keywords:

Groundwater level variations , Hybrid artificial intelligence technique , Wavelet transform , ANFIS , Optimization , Simulation

Optimization of ANFIS model using wavelet transform for simulating groundwater level variations authors

Fariborz Yosefvand

Department of Water Engineering, Faculty of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

Saeid Shabanlou

Department of Water Engineering, Faculty of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Adamowski J., and Sun K., Development of a coupled wavelet ...
Barzegar R., Fijani E., Moghaddam A.A., Tziritis E., Forecasting of ...
Chitsazan M., Rahmani G., Neyamadpour A., Groundwater level simulation using ...
Dash N.B., Panda S.N., Remesan R., Sahoo N., Hybrid neural ...
Ebrahimi H., and Rajaee, T., Simulation of groundwater level variations ...
Grossmann A., Morlet J., Decomposition of hardy functions into square ...
Jang J.S., ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on ...
Jang J.S.R., Sun C.T., Mizutani E., Neuro-Fuzzy and soft computing: ...
Kisi O., and Shiri J., Wavelet and neuro-fuzzy conjunction model ...
Khaki M., Yusoff I., Islami, N., Simulation of groundwater level ...
Liu D., Li G., Fu Q., Li M., Liu C., ...
Singh R.M., Wavelet-ANN model for flood events, Proceedings of the ...
نمایش کامل مراجع