ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
Publisher of Iranian Journals and Conference Proceedings
Paper
Title

DeepSumm: A Novel Deep Learning-Based Multi-Lingual Multi-Documents Summarization System

Year: 1398
COI: JR_JIST-7-3_006
Language: EnglishglishView: 68
This Paper With 11 Page And PDF Format Ready To Download

Buy and Download

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این Paper را که دارای 11 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

Authors

Shima Mehrabi - Computer Engineering Department, Faculty of Engineering, University of Guilan, Rasht, Iran
Seyed Abolghasem Mirroshandel - Computer Engineering Department, Faculty of Engineering, University of Guilan, Rasht, Iran
Hamidreza Ahmadifar - Computer Engineering Department, Faculty of Engineering, University of Guilan, Rasht, Iran

Abstract:

With the increasing amount of accessible textual information via the internet, it seems necessary to have a summarization system that can generate a summary of information for user demands. Since a long time ago, summarization has been considered by natural language processing researchers. Today, with improvement in processing power and the development of computational tools, efforts to improve the performance of the summarization system is continued, especially with utilizing more powerful learning algorithms such as deep learning method. In this paper, a novel multi-lingual multi-document summarization system is proposed that works based on deep learning techniques, and it is amongst the first Persian summarization system by use of deep learning. The proposed system ranks the sentences based on some predefined features and by using a deep artificial neural network. A comprehensive study about the effect of different features was also done to achieve the best possible features combination. The performance of the proposed system is evaluated on the standard baseline datasets in Persian and English. The result of evaluations demonstrates the effectiveness and success of the proposed summarization system in both languages. It can be said that the proposed method has achieve the state of the art performance in Persian and English.

Keywords:

Artificial Neural Networks; Deep Learning; Text Summarization; Multi-Documents; Natural Language Processing

Paper COI Code

برای لینک دهی به این Paper می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت Paper در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/1142421/

How To Citation:

در صورتی که می خواهید در اثر پژوهشی خود به این Paper ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Mehrabi, Shima و Mirroshandel, Seyed Abolghasem و Ahmadifar, Hamidreza,1398,DeepSumm: A Novel Deep Learning-Based Multi-Lingual Multi-Documents Summarization System,,,,,https://civilica.com/doc/1142421

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این Paper اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1398, Mehrabi, Shima؛ Seyed Abolghasem Mirroshandel و Hamidreza Ahmadifar)
برای بار دوم به بعد: (1398, Mehrabi؛ Mirroshandel و Ahmadifar)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

Research Info Management

Certificate | Report | من نویسنده این مقاله هستم

اطلاعات استنادی این Paper را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی Paper

مشخصات مرکز تولید کننده این Paper به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 11,965
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

New Papers

Share this page

More information about COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

Support